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Abstract – In this paper, we introduce a new hue-preserving
histogram equalization method based on the RGB color space
for image enhancement. We use R-red, G-green, and B-blue
1D histograms to estimate the histogram to be equalized using
a Naive Bayes rule. The histogram equalization is performed
by shift hue-preserving transformations. Our method has
linear time and space complexities, which complies with real-
time applications requirements. A subjective assessment com-
paring our method and other three is performed. Experiments
showed that our method is more robust than the others in
the sense that neither unrealistic colors nor over-enhancement
are produced.

1. INTRODUCTION

Image enhancement (IE) techniques have been often

applied to Image Processing and Computer Vision appli-

cations in order to increase the probability of success in

the image analysis task [2]. IE techniques are particularly

useful in applications where an image with more distin-

guished texture details and perceptually better colors are

required [3].

A great number of methods can be found in literature

for the purpose of IE [3]. Among them, a well-known

technique is Histogram Equalization (HE) [2]. HE consists

of generating a uniform histogram (i.e., uniform distri-

bution) from an original one. In image processing, the

idea of equalizing the histogram of an image is to use

the entire range of discrete levels of the image, stretching

and/or redistributing the original histogram, such that an

enhancement of image contrast is achieved.

In this paper, we introduce a new hue-preserving HE

method based on the RGB color space for IE. In fact,

the proposed method is an extended and improved version

of a previous work [4]. However, instead of using 3D or

2D histograms for IE, as in [5] and [4], we combine 1D
histograms and a Bayesian framework [1]. Moreover, our

method is hue-preserving [6], i.e., neither unrealistic nor

new colors are produced after the enhancement process.

The new method has linear time complexity with respect

to both the image size and the number of discrete levels in

each color channels. Hence, its complexity complies with

real-time application requirements.

The remainder of this paper is organized as follows.

Basic definitions for color images are presented in Sec-

tion 2. Previous works related to our method are described

in Section 3, and in Section 4 our new method is intro-

duced. Experiments are shown in Section 5, and, finally,

conclusions are drawn in Section 6.

2. BASIC DEFINITIONS

In this section, we present basic definitions for color

images and its probability functions, which will be used

throughout this work.

Let N denote the set of natural numbers. Let X be a

subset of points (x, y) ∈ N
2, such that 0 ≤ x < m, and

0 ≤ y < n, where m and n denote the dimensions of X .

Let ||Y || denote the cardinality of a set Y ⊆ N
2. Note

that ||X|| = m × n. A mapping I , from X to Z
3
L, is

called an (color) image (in the RGB color space). We

denote by IRGB such color image. In real applications,

L is typically 256. Indeed, we have three mappings from

X to ZL, which are the red, green and blue images, i.e.,
IR, IG and IB . For a point (x, y) ∈ X , Ri = IR(x, y),
Gi = IG(x, y) and Bi = IB(x, y), are called the red, green
and blue levels of the point (x, y) in I , respectively. We can

also denote (Ri, Gi, Bi) by IRGB
Ri,Gi,Bi

. In the following, we

define 1D, 2D and 3D histograms and probability density

and distribution functions for color images.

For the 1D case, we first consider the R color channel.

Let HIR

Ro
be the absolute frequency of level Ro in image IR,

where 0 ≤ Ro ≤ L−1. The mapping HIR

from the levels

of image IR to its absolute frequency levels, i.e., HIR

:
ZL → N, is called the histogram of image IR. Let P IR

be the probability density function of IR. We denote by

P IR

Ro
the probability of level Ro, i.e., P IR

Ro
= HIR

Ro
/m × n,

where 0 ≤ Ro ≤ L−1. Let CIR

be the cumulative density

function (CDF, or the probability distribution function) of

IR. We denote by CIR

Ro
the cumulative density of level Ro,

i.e., CIR

Ro
=

∑Ro

ro=0 P IR

ro
, where 0 ≤ Ro ≤ L − 1. It is

immediate to extend the above definitions of IR image,

i.e., HIR

, P IR

and CIR

, to IG and IB images.

For the 2D case, we first consider the R and G color
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channels. Let HIRG

Ri,Gi
be the absolute frequency of Ri

and Gi colors, in image IRG. The mapping HIRG

from

the levels of image IRG to its absolute frequency levels,

i.e., HIRG

: Z
2
L → N, is called the histogram of image

IRG. Let P IRG

be the probability density function of

IRG. We denote by P IRG

Ri,Gi
the probability of (Ri, Gi), i.e.,

P IRG

Ri,Gi
= HIRG

Ri,Gi
/m × n. Let CIRG

be the CDF of IRG.

We denote by CIRG

Ri,Gi
the cumulative density of (Ri, Gi),

i.e., CIRG

Ri,Gi
=

∑Ri

ri=0

∑Gi

gi=0 P IRG

ri,gi
. It is immediate to

extend the above definitions of IRB image, i.e., HIRG

,

P IRG

and CIRG

, to IRB and IGB images.

For the 3D case, we have a single histogram and

probability functions to be defined. Let HIRGB

Ri,Gi,Bi
be the

absolute frequency of Ri, Gi and Bi colors in image I .

Note that HIRGB

Ri,Gi,Bi
= 0 if there is no (x, y) ∈ X such

that IRGB(x, y) = (Ri, Gi, Bi). The mapping HIRGB

from the levels of image I to its absolute frequency

levels, i.e., HIRGB

: Z
3
L → N, is called the histogram

of image IRGB . Let P IRGB

be the probability density

function of IRGB . We denote by P IRGB

Ri,Gi,Bi
the probability

of (Ri, Gi, Bi), i.e., P IRGB

Ri,Gi,Bi
= HIRGB

Ri,Gi,Bi
/m × n. Let

CIRGB

be the CDF of IRGB . We denote by CIRGB

Ri,Gi,Bi

the cumulative density of (Ri, Gi, Bi), i.e., CIRGB

Ri,Gi,Bi
=

∑Ri

ri=0

∑Gi

gi=0

∑Bi

bi=0 P IRGB

ri,gi,bi
.

In the next section, we present previous works related to

the proposed method.

3. PREVIOUS WORKS

In this section we present works directly related to our

proposed method. We first briefly describe the classical

HE method for gray-level IE, which is extended for color

images. We then show the 3D HE method proposed by

Trahanias and Venetsanopoulos in [5], which is followed

by a description of a 2D HE method recently proposed by

us in [4]. These descriptions will help us to introduce our

method in Section 4.

3.1 Classical 1D Histogram Equalization

In this section we describe the HE method for

monochrome images (e.g., gray-level or red ones), followed

by its extension to deal with IRGB images. The goal of

HE is to uniformly distribute HIR

over the entire range of

levels or, equivalently, to generate a CDF which increases

monotonically as a straight line, such that an image contrast

enhancement be achieved.

The HE method for monochrome images is described as

follows. Let I and O be the input and the output images,

or the original and the equalized images, respectively. Let

HIR

, P IR

and CIR

be defined as in Section 2. Let HOR

be the desired uniform histogram of the output image,

where any level l has the same amount of pixels, i.e.,
HOR

l = 1
L (m × n), or the same density, i.e., POR

l = 1/L.

Thus, the CDF COR

is defined in function of l as COR

l =
∑l

i=0 P IR

i = (l + 1)/L.

The l′ output equalized level corresponding to the input

level l is obtained as the one that minimizes the difference

between COR

l′ and CIR

l . In other words, the output level l′

for the input level l can be computed as the transformation

function T IR

(l), i.e., l′ = T IR

(l) = |(L − 1) × CIR

l |,
where |z| stands for the nearest integer to z. To generate

the output enhanced image with this transformation, for

any pixel (x, y) ∈ X , we obtain the output value OR(x, y)
as l′ = T IR

(l), where l = IR(x, y).
This method can easily be extended for color IE, by ap-

plying separately the equalization process described above

to each IR, IG and IB images. This extended method

produces a well-known problem; it produces unrealistic

colors, since it is not hue preserving [6]. In the following,

we call this extended method as the classical 1D HE for

color IE.

3.2 3D Histogram Equalization

The method proposed by Trahanias and Venetsanopoulos

[5] takes into account the correlation of the three channels,

R, G, and B, simultaneously. And it can can be described

as follows.

Let I and O be the input and output color images.

Let HIRGB

, P IRGB

and CIRGB

be defined as in Sec-

tion 2. Let HORGB

be the uniform histogram of the

output image, where any entry (Ro, Go, Bo) has the same

amount of pixels, since a such output histogram is desired,

i.e., HORGB

Ro,Go,Bo
= 1

L3 (m × n), or the same density, i.e.,
PORGB

Ro,Go,Bo
= 1/L3. And so, any entry (Ro, Go, Bo) in

CORGB

can be directly computed using its values Ro, Go

and Bo, i.e.,

CORGB

Ro,Go,Bo
=

(Ro + 1)(Go + 1)(Bo + 1)
L3

. (1)

To produce the output enhanced image, for any input

pixel (x, y) ∈ X , where (Ri, Gi, Bi) = IRGB(x, y), the

smallest (Ro, Go, Bo) is found for which the inequality

CIRGB

Ri,Gi,Bi
− CORGB

Ro,Go,Bo
≥ 0, (2)

is true. However this step presents an ambiguity since

there exist many solutions for (Ro, Go, Bo) that satisfy

Equation 2. This ambiguity is remedied as follows. The

computed value of CIRGB

at (Ri, Gi, Bi) is initially com-

pared to the value of CORGB

at (Ro, Go, Bo)). If CIRGB

is greater (resp. less) than CORGB

, then the indexes Ro,

Go, and Bo are repeatedly increased (resp. decreased),

one at a time, until Equation 2 is satisfied. The ob-

tained (Ro, Go, Bo) is the output entry to (Ri, Gi, Bi),
i.e., if (x, y) ∈ x and (Ri, Gi, Bi) = IRGB(x, y), then

ORGB(x, y) = (Ro, Go, Bo).

3.3 2D Histogram Equalization

In this section, we describe the 2D HE method for Color

IE, which is published in [4]. In this method, instead to use

the correlation among the three channel as [5], it is used

the correlation of channels two at a time. The method is

described as follows.

Let I and O be the input and output images. Let the

input 2D histograms and probability functions be defined
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(a) (b) (c) (d) (e)

Figure 1. Results for the beach (partial Brazilian flag) image: (a) original image; (b) 1D HE; (c) 3D HE; (d) 2D HE; (e) our proposed method.

as in Section 2. Indeed, in this method, we do not equalize

the three 2D histogram, but we equalize a 3D pseudo-

histogram, H ′IRGB

, which is defined based on a pseudo

3D CDF. This CDF, C ′IRGB

, is computed as the product

of the three 2D CDFs for any entry (Ri, Gi, Bi), i.e.,

C ′IRGB

Ri,Gi,Bi
= CIRG

Ri,Gi
× CIRB

Ri,Bi
× CIGB

Gi,Bi
. (3)

The main rationale for computing this pseudo-CDF as

the product of three 2D CDFs is that the three channels in

an image are usually not simultaneously correlated.

The output entry (Ro, Go, Bo) for any pixel (x, y) ∈ X
is computed as follows. Initially, (Ro, Go, Bo) (the output

triplet) is set up as (Ri, Gi, Bi) = IRGB(x, y). Then an

initial CORGB

Ro,Go,Bo
is computed by Equation 1, and an error

is produced, i.e.,

C ′IRGB

Ri,Gi,Bi
− CORGB

Ro,Go,Bo
. (4)

This error will be used to guide the iterative process

increasing or decreasing the output triplet (Ro, Go, Bo).
Note that as in [5], the solution for Equation 4 also

presents an ambiguity. There are several solutions for

(Ro, Go, Bo) that satisfy Equation 1. Instead to increase

or decrease each channel at a time by a unit, the channels

are increasing or decreasing by proportional factors based

on each channel (for details, see [4]). The rationale for

this is that we can stretch the histogram simultaneously

in all three direction by factors depending on their-self.

The output triplet (Ro, Go, Bo) is the nearest integer triplet

which approximates to zero the difference between the

CDFs C ′IRGB

and C ′ORGB

, i.e., Equation 4.

Note that this HE method is not hue preserving, since the

shift transformation performed from (Ri, Gi, Bi) to (Ri +
k × TR, Gi + k × TG, Bi + k × TB) ≈ (Ro, Go, Bo) is not

hue preserving [6], where TR, TG and TB stands for the

displacement taken for each channel and k is the number of

iterations required to find the miminum error in Equation 4.

The hue is not preserved because we may take different

displacements in each directions.

In the next section, we present our proposed method.

4. THE PROPOSED METHOD

In this section, we present a hue-preserving HE method

based on the RGB color space for IE. Indeed, this method

is an extended and improved version of the method pro-

posed in Section 3.3. It is linear with respect to both

the image size and the number of discrete levels in each

channel.

The method is based on the independence assumption

of color channels, which is used in a Bayesian framework

for computing the CDF. In Data Mining and Knowledge

Discovery domains, it is well known that Bayesian classi-

fiers work well, even though the independence assumption

is violated [1]. Although it is also well known that this

assumption does not hold for the R, G and B channels

of color images, we hope that the enhancement produced

in color image through HE will work well. We use 1D
histograms to estimate a 3D probability distribution func-

tion, and then equalize the conceived histogram through the

estimated function. The method is described as follows.

Let I and O be the input and the output images,

respectively. Let HIR

, HIG

, HIB

, P IR

, P IG

, P IB

, CIR

,

CIG

and CIB

be defined as in Section 2. The CDF CIRGB

for any entry (Ri, Gi, Bi) can be estimated as the product

of every cumulative distribution CIB

Ri
, CIG

Gi
, and CIB

Bi
,

following the rule, i.e.,

C ′IRGB

Ri,Gi,Bi
= CIR

Ri
× CIG

Gi
× CIB

Bi
. (5)

Note that in this equation, C ′IRGB

obeys a Naive Bayes

sense, whilst in Equation 3 C ′IRGB

is defined without

a mathematical mean. Unlike to iteratively increase or

decrease Ro, Go and Bo, in order to minimize Equation 4

as performed in the method described in Section 3.3, we

propose to find the output triplet (Ro, Go, Bo) for any

image pixel in a single step, i.e., O(1). From Equations 4

and 1 or for solving Equation 5, we have

C ′IRGB

Ri,Gi,Bi
− (Ro + 1)(Go + 1)(Bo + 1)

L3
= 0. (6)

If we take Ro, Go and Bo as Ri +k, Gi +k and Bi +k,

respectively, where k is the number of iterations required

for minimizing Equation 4, we obtain

k3 + k2[R
′
i + G

′
i + B

′
i ]+

k[R
′
i × G

′
i + R

′
i × B

′
i + G

′
i × B

′
i ]+

R
′
i × G

′
i × B

′
i − L3 × C ′IRGB

Ri,Gi,Bi
= 0.

(7)

where R
′
i, G

′
i, and B

′
i means Ri + 1, Gi + 1, and Bi + 1,

respectively. By solving this a cubic equation in function

of k, we obtain the desired output triplet (Ro, Go, Bo) as

the input one plus the displacement k, i.e., (Ri + |k|, Gi +
|k|, Bi + |k|), where |k| stands for the nearest integer to

k. Equation 7 can easily be solved by Nickalls [7] or by

classical Cardian methods using transcendental functions.

It would be preferred to use the Nickalls method, since it

is faster and mathematically simpler than the last one.
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(a) (b) (c) (d) (e)

Figure 2. Results for the train image: (a) original image; (b) 1D HE classic; (c) 3D HE; (d) 2D HE; (e) our proposed method.

Note that any image pixel is equalized following a shift

transformation by a k factor, i.e., (Ri, Gi, Bi) to (Ri +
|k|, Gi + |k|, Bi + |k|), which is hue preserving [6]. Hence

the proposed method is also hue preserving.

5. EXPERIMENTS

In this section, a comparison among our proposed HE

method and the 1D [2], the 3D [5], and the 2D [4] methods

is carried out. A subjective assessment is carried out to

compare the visual quality of the images. Here we discuss

results for two images.

Figure 1 shows the results for the first image, the

beach. Note that unrealistic colors are present in the im-

age generated by the 1D HE method (Figure 1(b)). The

image produced by the 3D HE method is overenhanced,

producing colors very saturated (Figure 1(d)), i.e., bright

colors. In turn, the image produced by the 2D HE method

(Figure 1(d)) is more realistic than the others. In contrast,

another type of judgement can be performed considering

the application. We can say that the resulted image of the

3D HE method has better quality than the others, since the

water region in the image was better enhanced. Despite

of these arguments, we can say that our method generates

an image (Figure 1(e)) with a good balance between non

saturated and realistic colors.

Figure 2 shows the results for the second image, the

train. We observe that the 3D HE method produces an

overenhanced image (Figure 2(c)), that is, the colors are

very saturated. Our method and the 2D one produce images

(Figure 2(d)) better enhanced than the one obtained by

the 3D HE method. However, some hidden details in dark

regions continue to be uncleared. In our opinion, the best

enhancement is achieved by the image produced by the 1D
HE method (Figure 2(b)). In this case, the image produced

by the 1D HE method presents colors which are more

realistic for the green regions and have more details than

those produced by the other three methods. However, again,

note that in the sky portion of the image, unrealistic colors

are produced by the 1D HE method.

From the discussion above, we claim that our method

produces images (Figures 1(e) and 2(e)) with the best

tradeoff between the enhanced colors and saturation. That

is, our method produces images with colors that are more

realistic than the 1D and 2D HE methods (which are not

hue preserving), and the images are not so saturated as the

ones produced by the 3D HE method.

6. CONCLUSION

In this paper, we introduced a new hue-preserving HE

method based on the RGB color space for IE. The pro-

posed method has O(max(m×n,L)) and O(L) time and

space complexities, respectively. Such method complies

with real-time application requirements, given its complex-

ities.

Although the classical 1D HE method is six times faster

than ours, it is not hue preserving. Remark that our method

is two and forty times faster than the 2D and 3D HE ones,

respectively. In practice, our method enhances 1024×1024
image pixels in 100 milliseconds on a Pentium 4 - 2GHz.

As shown on the experiments in the previous section,

it is difficult to judge an enhanced image result even

with a subjective assessment. However, we claim that our

method is more robust than the others in the sense that

neither unrealistic colors nor overenhanced are produced.

For future works, we plan to evaluate the methods using

naturalness and colorfulness metrics [8] on a database with

hundreds of images collected from internet, such that a

quantitative comparison can be performed.
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