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Abstract. Based on discrete mathematical morphology, we propose a
new automated and fast procedure to segment the left ventricular my-
ocardium in 4D (3D+t) cine-MRI sequences. Thanks to the comparison
with manual segmentation performed by two cardiologists, we demon-
strate the accuracy of the proposed method. The relevance of the ejec-
tion fraction and myocardium mass measured from segmentations is also
assessed. Furthermore, we show that the proposed 4D procedure allows
to keep the temporal coherency between the successive 3D segmentations
obtained along the time sequence.

Introduction

In cardiology, the precise information on both the dimensions and function of
the left ventricle (LV) is essential, either in clinical applications –diagnosis, prog-
nostic, therapeutic decisions– or in the research fields.

Thanks to 3D images at different times of the heart cycle, Magnetic Reso-
nance (MR) imagery allows of a complete morphological LV characterization.
The precision on the measures extracted from MR images has been demon-
strated [1] and makes MR imagery a “gold standard” for LV analysis.

However, due to the considerable amount of available data, the analysis and,
in particular, the segmentation of such images is fastidious, time consuming and
error-prone for human operators. Automated segmentation of cardiac images has
shown to be a challenging task.

Since the 90’s, many approaches for solving this problem have been proposed,
notably in the framework of deformable models [2–4]. From a time series of 3D
images of the LV, most of the existing methods iteratively segment each 3D
image independently [5–7]. Despite a constant improvement in the accuracy of
the produced segmentations, the temporal consistency of the resulting segmen-
tations, a desired feature in the case of a time series of 3D images, is not taken
into account by these approaches. Only a few methods consider the time series
as a whole 4D image. Although it uses a 4-dimensional atlas, the method in [8]
assigns independently each pixel to one of the objects and does not take into ac-
count global properties (e.g. connectedness or presence of holes) relative to the



spatiotemporality of the produced segmentations. In [9], the authors propose
a 4D deformable model with temporal constraints. Despite promising results
on synthetic SPECT images, the resulting segmentation scheme was not fully
assessed on real cardiac images.

In order to take into account the time continuity in 4D cine-MRI, we investi-
gate a new LV segmentation scheme based on discrete mathematical morphology.
This theory [10] consists of analyzing geometrical objects through their inter-
action with predefined geometrical shapes. The notions of neighborhood and
connectivity are the basis of this framework. In particular, operators dedicated
to image segmentation are extended to 4-dimensional spaces by defining elemen-
tary 4-dimensional neighborhoods.

The main features of the LV segmentation method proposed in this paper
are: (i), accuracy assessed against manual segmentations performed by two car-
diologists; (ii), resulting segmentations taking into account spatiotemporal prop-
erties; (iii), automated and fast; and (iv) few parameters whose setting relies on
physical and anatomical facts. In this paper, the general idea of the method is
described; more details will be provided in a forthcoming extended version.

1 Segmentation method

The segmentation scheme in mathematical morphology [11] comprises three main
steps: recognition, delineation and smoothing. Recognition is the process of de-
termining roughly the whereabouts of the object. Delineation consists in the
precise spatial localization of the object borders. Smoothing can be defined as
the process of matching the smoothness properties of the segmented object with
the a priori smoothness properties of the ground truth.

The recognition process consists in finding markers (landmarks) for each ob-
ject to be segmented. This step of the method allows prior information to be
taken into account in the segmentation result. This prior knowledge derives from
the modeling of the objects which are to be segmented. The delineation process,
which is generally performed by watershed algorithms, looks for divides, localized
on the “most contrasted areas” of the image, which separate the selected mark-
ers. Finally, the smoothing step filters the objects obtained after the delineation
process by removing their non-significant parts, with respect to prior knowledge
about the shape of the objects. The left ventricular myocardium (LVM) is de-
limited by two surfaces: the epicardial border (EpB) and the endocardial border
(EnB). We consider (Fig. 1a): (i), the left ventricular chamber (named LV C)
delimited by EnB and surrounded by LVM ; and (ii), an object called LV CM ,
made by the union of the LV C and LVM , delimited by EpB and surrounded
by LV B, the Left Ventricular Background which is the complementary set of
LV CM .

The LV C is a connected set whose intensity is very high and which is sur-
rounded by a significantly darker zone (see Fig. 1b). It is known, from anatomical
description, that the EnB is an irregular surface.
The left ventricular myocardium surrounds the LV C and its intensity is darker
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Fig. 1. (a), Objects of interest in LV images; (b), example of Left Ventricular My-
ocardium segmentation and (c), a surface rendering.

than the one of LV C. The thickness of the LVM is not known in advance. It can
change from one patient to another and is neither constant around the chamber
of a same patient. Nevertheless, the thickness of the LVM can be bounded, and
since we only consider live patients, it cannot be null. Contrary to the EnB, the
EpB is a smooth surface.
Last, the LV B is composed of several tissues including among other the liver, the
stomach, the right ventricle and the lungs. Some of them, such as the right ven-
tricle or the lungs, have characteristic intensities and can be used as landmarks
for the LV B.

The proposed segmentation method is composed of two consecutive steps
which consist of LV C segmentation, followed by LV CM segmentation. Then,
LVM is simply the set difference between them. Since endo- and epicardial
borders differ both in terms of contrast and shape, we segment them by different
strategies.

1.1 Endocardial border segmentation

The segmentation of the EnB is performed independently on each volume of
the sequence. The idea is, first, to find a marker for the LV C (i.e., a subset of
the LV C made of points which belong to the LV C with certainty). Then, this
marker is dilated conditionally to a second set made of points which possibly
belong to the LV C.

The LV C is made of a very light core object surrounded by a “ring” of lower
intensity (see Fig. 1). The core object Ct can be segmented, separately in each
volume, by selecting the appropriate connected component of an upper-threshold
It[s1] of the input image It at level s1, i.e., It[s1] = {x ∈ Vt | It(x) ≥ s1},
where Vt is the set of voxels of the t-th 3D-image. In our experiments, the
images are cropped such that, in each 3D volume, the center belongs to the core
of LV C. To this aim, the user selects a single point roughly located at the center



of the LV C in one of the 3D images of the sequence. Then, in each 3D image,
a box whose center is the specified point is automatically cropped. This step,
which is the only user interaction of the whole method, could be automated but
the physicians who made the evaluation prefer to keep this control point.

Thus, in the 3D graph (induced by the classical 6-adjacency relation) corre-
sponding to the image under consideration, Ct is the connected component of
It[s1] which contains the center of the volume.

This core object is surrounded by a “ring” of lower intensity, still higher than
the intensity of the LVM , which is a partial volume effect due the presence of
both blood and muscle within the space of a single voxel. In order to get this
ring segmented, we perform a second upper threshold It[s2] of It at level s2 < s1;
It[s2] and Ct are combined together thanks to a geodesic dilation of size r1 of
Ct in It[s2] (see [10], chapter 6.1). In other words, LV Ct, the segmentation of
the LV C in the t-th volume of the 4D sequence, is the set of all points linked to
Ct by a path in It[s2] of length less than a predefined value r1 ∈ N.

1.2 Epicardial border segmentation

In this section, we describe LV CM segmentation. This segmentation is per-
formed after the one of the LV C. It must preserve some anatomical constraints.
Since we consider live patients, the left ventricular myocardium does not have
any hole. This leads to the constraint EpB ∩EnB = ∅. In the graph framework
assumed in this paper, it means that, in each 3D graph of the 4D-sequence, the
spatial neighborhood of LV Ct should be included in LV CMt, the segmentation
of the LV CM in the t-th image: LVM must be at least one pixel thick.

The segmentation of LV CM is performed thanks to a watershed-based pro-
cedure. Marker selection plays a primary role in the result of the watershed. In
our application, it allows, in particular, to take into account the prior knowl-
edge of the heart by imposing constraints on the markers. Since we want to get
the separation between LV CM and LV B, we need to select two markers, one
for each of these objects. In the following, mLV CM and mLV B denote these
two markers whereas wLV CM and wLV B denote the corresponding objects in
the segmentation obtained through the watershed. The recognition process, de-
scribed below, is performed independently on each volume of the 4D-sequence.
On the other hand, the watershed is applied on the 4D-graph associated to the
4D-sequence starting from the union of all the markers extracted in 3D.

mLV CM : Recognition of the LV CM We first tackle the problem of com-
puting mLV CMt, for any given t. The watershed transform extends the markers
as much as possible. Thus, by definition, each marker taken as an input of the
watershed transform is included in the corresponding object obtained after the
watershed. Hence, in order to fulfill the pre-cited inclusion constraint, we need
to impose the inclusion of the spatial neighborhood of LV Ct in mLV CMt.

In order to compute this marker, the basic idea is to dilate the already known
left ventricular chamber as much as possible while ensuring that the marker



lies in the “true” LV CMt. Since we are dealing with infarcted ventricles, it
is not reasonable to use the same dilation parameter everywhere around the
chamber and for every different dataset. Thus, the dilations must be constrained
in order to fit each particular anatomy. To this aim, we introduce a definition
of a constrained dilation, which, due to space restriction, is not provided in this
paper but will be given in a forthcoming extended version.

In our application, the goal is to find a constraining set which is able to
capture some of the features which are particular to the shape of the heart under
consideration. Therefore, this set is extracted from the images. Some bright and
dark regions (corresponding, for instance, to the right ventricle, the vascular
network or the lungs) surrounds the LVM . These regions can be classified as
non-myocardium objects and, thus, used as our constraining set. Some robust
markers of these zones can be easily extracted by upper and lower threshold of
the image: Tt = {x ∈ Vt\Nt(LV Ct) | It(x) < s3 or It(x) > s4}, where Nt(LV Ct)
denotes the dilation of size 1 of LV Ct, s3 ∈ N and s4 ∈ N. Then, mLV CMt,the
marker of the LV CM in the t-th 3D image is defined as the dilation of size
r2 of Nt(LV Ct) constrained by Tt. The constrained dilation is designed to take
into account that we deal with markers of an object rather than with its precise
segmentation. Thus, the set Tt does not need to be a precise segmentation; it is
used as a landmark for the right ventricle, the vascular network, etc. . .

mLV B: Recognition of the LV B We now explain how to compute, in
each 3D image of the sequence, the marker for the left ventricular background
(mLV Bt). We consider the following facts: (a), the thickness of a left ventricular
myocardium cannot exceed a given threshold, denoted by r3; (b) the set Tt is
made of points which are in the background of the left ventricular chamber
and myocardium. We deduce from fact (a) that the points farther from LV Ct
than a distance of r3 have to belong to LV Bt. This set is denoted by LV Br3

t .
From fact (b), we also want Tt to be included in mLV Bt. In order to satisfy
these two requirements, the easiest way is to consider mLV Bt as the union of
LV Br3t and Tt. We observe that this set is not necessarily connected. Using it
as a watershed marker can induce some unwanted configurations of wLV CMt,
obtained after the watershed process. In particular, wLV CMt can have some
cavities.

In order to overcome this problem, the idea is to derivemLV Bt by a topology-
preserving transformation. It is straightforward that the left ventricular back-
ground contains a unique cavity made of the left ventricular chamber and my-
ocardium. We remark that mLV CMt is, by construction, connected and that it
must be surrounded by LV Bt. The complementary set of mLV CMt thus con-
tains a unique cavity, and obviously, surrounds mLV CMt. Therefore, we choose
to derive mLV Bt from the complementary set of mLV CMt. The idea is to re-
duce this set while both preserving its topology and respecting facts (a) and (b).
To this aim, we use a constrained ultimate homotopic skeleton [12]. Roughly
speaking, an ultimate homotopic skeleton of a set X constrained by a set C, has
the same topology as X, contains C, and cannot be reduced (by point removal)



while keeping these two invariants. Thus, we compute mLV Bt, the marker of
the left ventricular background, as the skeleton of mLV CMt (i.e., the comple-
mentary set of mLV CMt) constrained by Tt ∪ LV Br3t . We finally obtain a set
mLV Bt which has the desired topology and which respects facts (a) and (b).

Delineation The watershed transformation [11] is used as a fundamental step
in many powerful segmentation procedures. It is a graph-based method that
allows, from a gradient image, to find a “thin” separation between the com-
ponents of a given set of points called marker. In this application, we use the
watershed approach [13] that we have developed since it has good robustness
properties [14]. We consider the 4D graph corresponding to the 3D+t sequence.
The neighborhood of each voxel corresponds to its 6 neighbors in 3D and the
voxels just before and after in the time sequence. In this graph, the watershed
of the 4D gradient magnitude image is computed, starting from the two mark-
ers made by the union of all mLV CMt and mLV Bt. As a result, we obtain, a
first segmentation of LV CM , denoted wLV CM lying on a background object
wLV B.

Smoothing In order to obtain the final segmentation of LV CM , we use shape
filters coming from mathematical morphology. An alternating sequential filter
(ASF ) with parameters r and r′ is a sequence of intermixed openings and closings
by balls of increasing size, where r and r′ specify the size of respectively the
smallest and largest ball (see [10], chapter 8.3). An opening of a set X by a ball
of radius r is the union of all balls of radius r which are included in X. On the
other hand, the closing of X is the complementary of the opening of X. Thus,
an ASF smoothes the object and its complementary in a balanced way while
preserving the “most significant balls” of both object and background.

The endocardial border can be modeled as the surface of a cone. Each section
(perpendicular to the height axis) of a cone is a disc. Then, we consider 2-
dimensional ASF , with parameters r4 and r5, for smoothing each 2D section of
the 3D wLV CMt.

2 Experiments

2.1 Image acquisition

In our experiment, the original images consist of short axis 2D sequences (be-
tween 8 and 13 sequences of 25 images per patient) with breath-held, ECG-gated
acquisitions from base to apex. The most basal slices included in the analysis
was located lust above mitral valve within LVC. To be included, the basal my-
ocardium had to be visible in the entire circumference at end-systole. The most
apical slice was chosen as the one with the smallest visible LVC at end-systole.
The sequences are registered on the heart-cycle, and thus they can be stacked
to construct 3D sequences. Each 3D sequence is made of 25 volumes and covers
a complete heart cycle. The spatial resolution is typically 1, 7 × 1, 7 × 6 mm3.



Before applying the segmentation procedure, the images are over-sampled in or-
der to get isotropic voxels. When a misalignment of the different sections of a
same volume is observed, a basic registration procedure is possibly applied as a
preprocessing step.

2.2 Parameters

In our method, there are two kinds of parameters. A first series is related with
the shape of a left ventricle and can be expressed by distance measures. In our
experiment, r1, r2, r3, r4 and r5 were set up to respectively 9, 5, 25, 7 and 12 mm.
These parameters are neither patient-specific nor device-specific. On the other
hand, our method comprises a series of parameters relative to the intensity of
the images. In our experiment, s1, s2, s3, s4 were set up to respectively 170, 105,
20, 170. These parameters are not patient-specific but they are device-dependent
which means that they must be re-estimated for each device.

The proposed method relies on a succession of operators. The results of each
of these operators are well specified with respect to anatomical constraint. Thus,
each of them can be tuned separately: the operators –and, thus, the parameters–
are independent. One of the two cardiologists estimates these parameters by
independently tuning each operator thanks to qualitative assessment. This choice
is the less time-consuming one since it does not require manual segmentation and
minimizes the number of tests to be performed. For instance, s1 is estimated by
interactively thresholding the image: the highest threshold such that all points
(above this threshold) connected to the center of the 3D volume belong to the
LV C with certainty is kept. We emphasize that only 3 training datasets were
enough to set up these parameters. Their complete tuning took four hours of
work for the practician. We recall that if one wish to use the proposed method
on a different device, only the parameters relative to image intensity need to be
re-calibrated. This would require less than one hour.

Furthermore, during the setting of the parameters, we noticed their robust-
ness with respect to small variations of typically,± 5% for the parameters relative
to the intensity of the images and ± 10% for the shape parameters. In a forth-
coming extended version, we intend to make a systematic study of the impact
of these small variations on the resulting segmentations.

2.3 Results

Quantitative assessment Four-dimensional cardiac cine-MR images were ac-
quired in 18 consecutive patients which were not specifically chosen for this
application. Images were processed automatically by the proposed 4D method.
In Fig. 1, we show (a) the internal border (on 3 orthogonal sections of a 3D
volume) of the segmented LVM , obtained by the 4D-method, superimposed to
the corresponding sections of the original image and (b) a surface rendering of
the segmentation. For comparison, the dataset was also manually segmented by
2 independent experts (cardiologists), called e1 and e2 in the sequel. On each 2D



section of the 3D volumes corresponding to end-diastolic and end-systolic time,
they manually delineated EnB and EpB.

Given two surfaces ∂X and ∂Y represented by two sets of polygons, the point-
to-surface measurement (P2S) between ∂X and ∂Y estimates the mean distance
between the vertices of ∂X and ∂Y . A symmetrical measure is obtained by
taking the maximum from the P2S between ∂X and ∂Y and the P2S between ∂Y
and ∂X.

The P2S achieved by other groups for segmenting the endocardial and epi-
cardial border on their datasets are presented in Table 1a.
On our dataset, the surfaces (EnB and EpB) are extracted from the segmen-
tations by a marching cube algorithm. The P2S was performed between the
segmentations obtained by the software and by the two experts. In order to
evaluate the inter-observer variability the P2S between the two experts is also
provided. Table 1b present the mean and standard deviation of these measures at
end-diastolic time and end-systolic time. We note that, in all cases of Table 1b,
the P2S is less than 1 pixel. The method achieved a mean P2S of 1.51mm ± 0.38
for the endocardial border and a mean P2S of 1.81mm ± 0.43 for the epicar-
dial border. These results compare favorably with the results obtained by other
groups on their own datasets (see Table 1b). Furthermore, the P2S between au-
tomatic and manual segmentations is in the same range as the inter-observer
P2S: the proposed software produces satisfying segmentations.

Table 1. (a), Point to surface measurements from the results of different cardiac
segmentation methods. (b), More details on the segmentations obtained by our method,
(mean point to surface in mm ± standard deviation).

(a) (b)
EnB EpB

[6] 2.01 ± 0.31 2.77 ± 0.49
[4] 2.75 ± 0.86 2.63 ± 0.76
[5] 2.28 ± 0.93 2.62 ± 0.75
[8] 1.88 ± 2.00 2.75 ± 2.62
[7] 1.97 ± 0.54 2.23 ± 0.46

ours 1.51 ± 0.38 1.81 ± 0.43

soft. vs. e1 soft. vs. e2 e1 vs. e2
End-diastolic time
EnB 1.52 ± 0.35 1.67 ± 0.43 1.37 ± 0.47
EpB 2.04 ± 0.35 1.68 ± 0.39 1.23 ± 0.41
End-systolic time
EnB 1.50 ± 0.41 1.35 ± 0.34 1.15 ± 0.41
EpB 1.90 ± 0.56 1.61 ± 0.41 1.31 ± 0.83

Left ventricular ejection fraction (EF) and left ventricular myocardium mass
(MM) are critical parameters for cardiac diagnosis and remodeling prevention.
Their estimation is routinely used by cardiologists. The EF is the amount of
blood ejected during a heart cycle expressed as a fraction of the tele-diastolic
volume. In our dataset the EF (resp. MM) range was 20-75% (resp. 94-197 g).
From the segmented images, the EF can be simply computed by (|LV Cmax | −
|LV Cmin |)/|LV Cmax |, where |LV Cmax | (resp. |LV Cmin |) is the maximal (resp.
minimal) volume of the left ventricular chamber along the heart cycle. Let X o

p

denote the measure of the parameter X performed by operator o for patient
p, where X ∈ {EF,MM}, o ∈ {e1, e2, s}, and p ∈ [1, 18]. We take refXp =
(Xe1

p + Xe2
p )/2 as a reference value for the parameter X on patient p and we

evaluate the deviation ∆Xo
p = |Xo

p−refXp|/refXp. Notice that ∆Xe1
p = ∆Xe2

p .
On 18 patients, our automatic software achieved a mean deviation on the EF
(resp. MM) of 0.032 (resp. 0.050) whereas the experts achieved 0.055 (resp.



0.052). Thus, the proposed tool produces reliable assessment of left ventricular
functional parameters.

In an extended version of this paper, we provide further experimental results,
including, in particular, a qualitative assessment of the method.

3D watershed vs. 4D watershed The proposed segmentation scheme has
been tested using the 4D watershed-based procedure described above and also
with a variant using only 3D watersheds (one per volume Vt). It is visible on the
computer screen that, contrary to the 3D variant, the 4D algorithm helps keeping
the temporal coherency between successive segmentations along the heart cycle.
In order to precisely evaluate this temporal coherency, we compute, for both
methods, the P2S between successive EpBs along the cardiac cycle. The means
of these measurements among all patients are plotted along the cardiac cycle
in Fig. 2. We observe that both curves have the same shape but that there is
a nearly constant difference between them. Thus, this confirms the fact that
segmentations obtained by the 4D method are more regular.
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Fig. 2. The point to surface measurements between the successive EpBs along the
cardiac cycle.

The segmentation of endocardial borders is performed independently on each
3D volume of the sequence. Nevertheless, we have not noticed any regularity
problem in the EnBs produced by the automated software. This explains why
we have not developed a 4D procedure to segment the LV C.

Conclusion and perspectives

In this paper, we propose a fast (worst computational time among the 18 datasets
is 4’3” on a low-end computer laptop) and automated procedure to segment the
left ventricular myocardium in 4D cine-MRI sequences, taking into account spa-
tiotemporal properties. This procedure can be used in clinical routine. Thanks
to the comparison with manual segmentations performed by two cardiologists,



we demonstrated the accuracy of the proposed method and the relevance of the
ejection fraction and myocardium mass derived from the automated segmenta-
tions.
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