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Abstract

In this paper, we describe a database of cine-MR (3D+t) imadehe left ventricle. This database
contains the voxel data, one automated and two manual segtioas for each sequence of images. The
segmentations are validated from a clinical point of viewe ®étail how the images were obtained, as
well as how the associated segmentations were performealdt/grovide the data clinical validation

process.
This database, including tools to compute quantitativesuess and the software package used to

obtain the automated segmentation, is freely availablesfegarch purposes.
The address of the sitefist p: / /| aur ent naj man. or g/ heart .
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1 Introduction

The assessment of left ventricular (LV) function is perfedrroutinely in the clinical field. It provides
important prognostic information among patients with eas cardiomyopathies. Cardiac magnetic reso-
nance (CMR) can image the heart in arbitrary direction witedlent spatial and temporal resolution. This
procedure yields full anatomic coverage and dynamic asss#sof the heart throughout the cardiac cycle.
Thanks to good image quality and contrast, as well as compleatomic coverage of the LV, CMR has
become a gold standard for the clinical assessment of LMifam¢3]. However, dynamic CMR in the cine
mode yields a large amount of data. As a consequence, theatlamalysis of LV function from cine-MRI
requires an interactive segmentation of adjacent 2D shastiocations, as frequent manual corrections of
myocardial contours are required. This is especially tnygatients with segmental wall motion abnormal-
ity or deformed LV. Numerous authors (see for instar&elfl, 10, 6, 8, 13, 7, 11]) have contributed in the
development of accurate methods that aim to allow fully ensted segmentation of the whole 3D cine-MRI
dataset over time (i.e., 3D+t or 4D) for the assessment ofun¢tion, volumes and mass.

One of the main problems in the assesment of those methdus ddbtention of a database of cine-MRI and
associated ground-truth segmentations that are alsatedidrom a clinical point of view. Until now, to our
best knowledge, no such base was available. This not onlept® the clinical validation of some of the
pre-cited methods, but also precludes a fair comparisomdest the existing validated methods.

The goal of this paper is to propose a database freely alai@bthe internet for research purposes. It
contains cine-MR images of the LV, together with three aisged segmentations: two hand-made seg-
mentations — each one of them performed by an independenblantitd expert cardiologist — and one
4D automated segmentation. We also provide scripts andaregthat compute each of the quantitative
measures described in this paper, and the software packagdaobtain the automated segmentation. The
web-address of this databasénis p: / /| aur ent naj man. or g/ heart .

The outline of the paper is the following: we first describe #tquisition of the images. We then detail
the methodologies for the three segmentations, concergrah the manual ones. Finally we discuss the
validity of the different segmentations, both quantitelyvand qualitatively, by comparing them together,
each one of them against the others.

2 MR images acquisition

Screened population patients referred to our Institutfongsecent acute myocardial infarction (AMI) were
prospectively screened regardless of the treatment extaithe acute phase. To be included, patients had to
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exhibit symptoms of AMI —i.e., chest pain, ST segment elevadf more than 1 mm in at least 2 contiguous
leads of the ECG, and greater than double the normal elevaficreatine-kinase MB subfraction. In
addition, the diagnosis of AMI was required to be confirmedilasive coronary angiography with a
clearly documented culprit epicardial coronary arteryndfcontraindication to CMR was found, patients
were scheduled to have CMR examination between day 2 and d@grdAMI. The study protocol was
approved by the Joint Committee of the Henri Mondor Mediaatitutions and informed written consent
was obtained from all patients.

In fine, 18 out of 25 patients from routine clinical practicere screened according to these guidelines.
These patients had experienced a first AMI and had agreediergm subsequent CMR examination.

The patients were examined on a 1,5 T MR scanner (Magnetonp, Siemens, Erlangen, Ger-
many) using 6-channel anterior and posterior phased atndgce coil technology. Following a 3D fast
gradient-echo localizer sequence, the long axis of thet weas located and dynamic cine-MR images of
the heart were acquired in 2-chamber, 4-chamber, and 3fmraviews. From these, the short axis of the
heart was located perpendicularly to the long axis of the@dhtiguous short-axis slices of the LV were
acquired from base to the apex encompassing the entire dggh the use of repeated breath-held ECG-
gated steady-state free precession sequence (SSFP)pitthl tynaging parameters as follow: 300-360 mm
field of view, 2.1 ms TR, 1.6 ms TE, 80lip angle, 6 mm slice thickness, no gap, image matrix 256x160
30-40 ms temporal resolution.

The number of LV short-axis locations required to cover theére LV by cine-CMR ranged from 9 to 14.
The number of frames acquired during the entire cardiacecyariged from 22 to 37, depending on heart
rate (49-91 bpm). The most basal slice included in the aisalyas located just above the mitral valve
within the LV cavity. To be included, the basal myocardiund ba be visible in the entire circumference at
end-systole. The most apical slice was chosen as the ong¢hgigmallest visible LV cavity at end-systole.
Since the sequences are ECG-gated, the end-diastolic famesponds to the first image of the sequence.

3 Methodologies for segmentation

3.1 Preprocessing

For each patient, the cine MRI dataset consisted of a suooestcontiguous (no gap) LV short-axis 2D
planes that were successively imaged over time (2D+t). €gaences were registered to the heart-cycle,
and could therefore be stacked in order to construct 3D segge Taken together, these different planes
from base to apex were considered a 3D representation of\th&He succession of these, over time,
is a 3D+t representation of the LV. Before applying any segfait@n procedure, the images were over-
sampled in order to provide isotropic voxels. For each secgi®f 3D+t images, a single mouse click on
the center of the LV cavity at end-systolic time was recordaut the images were cropped centered on
the corresponding location. Typically, the size of eachunt of the sequence represents QD0 x 40
voxels. When a misalignment of the different sections ofraesaolume was observed, a translation-only
registration procedure was applied.

3.2 Automated 4D segmentation

The method for the 4D segmentation of the LV was recently ldgesl and is described elsewhe# (a
journal paper is in preparation). It automatically detdmith the endocardial and epicardial borders of the
LV for the whole 4D dataset, based on prior knowledge of thepshand appearance of the LV. The 4D
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object isolated between the 2 borders is labeled as LV myagar(LVM) and the 4D object isolated inside
the endocardial border is labeled as LV cavity (LVC).

The computation time to automatically segment a whole 4usece ranged from 2 to 5 minutes on a
conventional personal computer.

3.3 Manual segmentation

A conventional 2D manual segmentation of the LV myocardiuas \werformed by two independent and
blinded expert cardiologists. They used a software packaaas well established for the post-processing
of medical images (Analy@, Biomedical Imaging Resource, Mayo Clinic Foundation, ester, MN).
These two experts are calleg ande, in the sequel. The cine-MR dataset was analyzed as a sumtessi
of 2D LV short-axis planes. For each slice location, the espmanually overlaid the endocardial and
epicardial contours both at end-diastolic and end-systohes. During manual tracing, papillary muscles
and LV trabeculae were included within the LV myocardium.ehthe segmented slices were stacked to
rebuilt a 3D object for quantification.

The time spent by the experts to manually segment one voldrae88D+t sequence ranged from 15 to 20
minutes. For this reason, a manual segmentation is nobalaiat every time-step.

4 Validation of the segmentations

In this section, we discuss the quality of the segmentatiditise two experts and of the automated method,
both from a quantitative and a qualitative point of view.

4.1 Quantitative assessment

In order to characterize the accuracy of all methods, we tsedifferent kinds of measures. The first
measure is relative to the mean distance between the ssigat@cted from the automated segmentations
and from the manual segmentations. The second charastéhiséalse positive and false negative volume
of the segmentations. Then, we assess the ability of theraténl method to produce reliable characteristics
of the LV function via the computation of the ejection fractiand of the myocardium mass.

Accuracy: point-to-surface measurement

Given two surfacegX anddY represented by two sets of polygons, foent-to-surface measurement (P2S)
betweerdX anddY estimates the mean distance between the verticgés ahddY (see [L]). A symmetrical
measure is obtained by taking the maximum from the P2S batdé¢anddY and the P2S betweealY and
oX.

On our dataset, the endocardial and the epicardial bordmesextracted from the segmentations by a march-
ing cube algorithntj]. The P2S was computed from the segmentations obtainedebgutomated method
and the two experts. In order to evaluate the inter-obsemgability the P2S between the two experts is
also provided. Tablé presents the mean and standard deviation of these measares@iastolic time and
end-systolic time. We note that, in all cases in Tahlthe P2S is less than 1 voxel. The automated method
achieved a mean P2S of 1.51mm0.38 for the endocardial border and a mean P2S of 1.84mdn43



4.1 Quantitative assessment

Table 1: Details of the point to surface measurements framedhults of the various segmentation methods

(mean point to surface measurements expressed inbstandard deviation).

soft. vs.g

soft. vs.e

e Vvs.e

End-diastalic time
Endocardial border
Epicardial border
End-systalic time
Endocardial border
Epicardial border

1.524+ 0.35
2.04+0.35

1.50+ 0.41
1.90+ 0.56

1.67+0.43
1.684+ 0.39

1.35+0.34
1.61+0.41

1.37+ 0.47
1.23+0.41

1.15+0.41
1.314+0.83

for the epicardial border. These results compare favounaith those obtained by other groups on their
own datasets. Furthermore, the P2S between automated andihs@gmentations is in the same range
as the inter-observer P2S. This is a strong indication tmatautomated method produces as satisfying a
segmentation as either manual one.

Although the accuracy of the methods is assessed by the R&®, ineasures do not precisely describe the
quality of the produced segmentations. In particular, ghative importance of the misclassified objects — a
parameter which becomes crucial while quantifying the n@wof the different objects — is not handled by
the point-to-surface measurements.

Accuracy: False Negative/Positive Volume Fraction

In order to better characterise the accuracy of the segmmmiaethods, we also used the two following
measures preconized by J. Udwgial. in [12]. LetY be a subset of the image voxels considered as the
reference segmentation and ¥ebe the segmentation which is to be evaluated. We set

FNVF(X,Y) = XX

ol and FPVE(X,Y) =25/

N

These measures are expressed as a fraction of the volunreef delineation. Th&NVF (False Negative
Volume Fraction) indicates the fraction of tissue that wassed and=PVF (False Positive Volume Frac-
tion) denotes the amount of tissue falsely identified ascibma of the total amount in the “true” delineation.

For each of the 18 patients, we compukdVF andFPVF for e againste;, automated method agairest
e againste,, and automated method agaiest

These measures were computed for three objdd¥&C, LVM and for LVCM - the union ofLCM and
LVM. Table2 presents the mean and standard deviation of these measeresdiastolic and end-systolic
times for the 18 datasets. We remark that error rates betéeetwo experts and between experts and
software are in the same range. In the task of segmehti@ LVCM andLV M, the inter-expert errors are
comparable with the errors between software and expert esgigitions. However, we observe a tendency
of the automated method to underestima# and LVCM with respect to the experts. Indeed, the false
negatives are 1.5 to 4.5 times greater than the false pesitivrom a qualitative study described later, the
two experts came to the conclusion that the automated canteere generally better localized than the
manual ones. The apparent under-estimationsvaf andLVCM can, thus, be seen as a side effect of the
manual segmentation process. In Sectdd?) we explain some of the bias due to the manual segmentation
process.



4.2 Qualitative assessment: manual segmentation and inter-expert variability

Table 2: Mean and standard deviation of FNVP, FPVF for alhsagfations olL.VC, LVCM andLVM at

end-diastolic and end-systolic-time [see text].

End-diastolic time

& Vse soft. vsg; e VsSe soft. vse,
LvC FNVF | 0.06+0.03 | 0.13+0.05 LvC FNVF | 0.074+0.05 | 0.14+0.06
FPVF | 0.074+0.08 | 0.03+£0.02 FPVF | 0.0740.02 | 0.03+0.01
LVCM | FNVF | 0.06+0.01 | 0.0940.02 LVCM | FNVF | 0.02+0.05 | 0.06+=0.03
FPVF | 0.03+0.06 | 0.03+0.02 FPVF | 0.074+0.01 | 0.04+0.02
LVM FNVF | 0.204+0.04 | 0.22+0.04 LVM FNVF | 0.11+0.03 | 0.15+0.04
FPVF | 0.1040.03 | 0.20+0.06 FPVF | 0.224-0.06 | 0.25+0.10

End-systolic time

& Vse soft. vsg e VsS& soft. vse,
LvC FNVF | 0.10+0.04 | 0.16+0.06 LvC FNVF | 0.064+0.03 | 0.13+0.05
FPVF | 0.06+0.03 | 0.05+0.03 FPVF | 0.114+0.05 | 0.06+0.03
LVCM | FNVF | 0.07£0.01 | 0.0740.03 LVCM | FNVF | 0.02+0.02 | 0.04+0.02
FPVF | 0.02+0.02 | 0.05+0.02 FPVF | 0.074+0.02 | 0.06+0.02
LVM FNVF | 0.144+0.04 | 0.14+0.04 LVM FNVF | 0.0940.03 | 0.09+0.02
FPVF | 0.0840.03 | 0.16+0.07 FPVF | 0.1540.05 | 0.184+0.06

Assessment of critical parameters

Left ventricular ejection fraction (EF) and left ventriamlmyocardium mass (MM) are critical parameters
for cardiac diagnosis and remodeling prevention. Theinmegtion is routinely used by cardiologists. The
EF is the amount of blood ejected during a heart cycle expdeas a fraction of the tele-diastolic volume.
In our dataset the EF (resp. MM) range was 20-75% (resp. 94919

From the segmented images, the EF can be computéd\8¢max| — |LVCrmin|)/|LV Cmax|, Where|LV Crax|
(resp.|LVCnin|) is the maximal (resp. minimal) volume of the left ventremuthamber along the heart cycle.
Let X5 denote the measure of the paramétgrerformed by operatar for patientp, whereX € {EF,MM},
o€ {e,e,s}, andp € [1...18. We takerefX, = (X5 +Xg?)/2 as a reference value for the parameter
on patientp and we evaluate the deviatidxXg = [Xg — refXp|/refX,. Notice thatAXst = AX52.  Over all

18 patients, the automated method achieved a mean dewviatitre EF (resp. MM) of 0.032 (resp. 0.050)
whereas the experts only achieved 0.055 (resp. 0.052)hdtunbre, we observe thAEF; (resp.AMM3 )

is less tharAEFg* (resp. AMME) in 8 (resp. 9) of the 18 patients. In other words, the dewatn the EF
(resp. MM) achieved by the automated method is less thane¥iattbn achieved by the experts in 8 (resp.
9) of the 18 patients. We conclude that the automated toayaes reliable assessment of left ventricular
functional parameters comparable to the experts’. A si@disanalysis of these data — including linear
regression and Bland-Altman plots — can be found on the welhtsip: / /| aur ent naj man. or g/ heart .

4.2 Qualitative assessment. manual segmentation and inter-expert variability

We now analyze some features of all segmentation methodshwhinnot be exhibited solely from a quan-
titative assessment. In Fid, we present a view of the segmentations obtained by the twertexand by
the automated method for a sample 3D image. We observe thaY/tl segmented by, is significantly
thinner than the one segmenteddyy We also remark that in location A, expeitdid not recognize a part
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of the papillar muscle which was however segmenteabgnd by the automated method. In location B,
the myocardium segmented by presents a hole, which is not compatible with anatomy. We tiwit the
automated method avoids such situations by constructidnvarobserve tha's segmentation has no hole.
This topological consideration has however no ill-effectamy of the quantitative measures.

Several explanations can be given. On the one hand, exgenesgations were realized exclusively on 2D
images, which introduces a bias. Neither the spatial cologrbeetween successive 2D sections of a 3D
image, nor temporal coherency with the previous and nexy@saf the sequence were taken into account.
On the other hand, the precise delineation of a contour] pixeixel, is a very demanding task for human
operators. It is well known that, in general, human opegatan outperform computerized procedure in
recognition tasks, whereas algorithms can often perforteibnan humans at delineation. Finally, we point
out that there is no standardized procedure for manual sggire ofLV M in cardiac MR-images, contrary
to what can be the case for other segmentation tasks in otbh@alities R]. Therefore, the physicians who
made this evaluation all believe that the automated metkoérglly outperforms manual segmentation.

Q| D DO
L o) L J

(a) b

~~

Figure 1: Examples of segmentations performeapbfa), e, (b) and the automated method (c).

5 Conclusion

We describe in this paper the acquisition and analysis otabdae of cine-MRI of the LV, with associated
clinically-validated segmentations. The number of pasen the database may superficially appear to be
small but, in actual fact, the number of contours processethé tested techniques corresponds to 4752
endocardial and 4752 epicardial borders drawn from 216 Laftsdxis slices, all performed by specialist
cardiologists. The measured values obtained with the aateamD analysis were found to be comparable
with those obtain by the manual 2D+t methods. In this patemulation, there was no other standard for
comparison with true measurements of LV mass or volumes4Drenalysis shows no significant difference
in the clinical practice with values obtained from the iaigive analysis of successive 2D locations.

This database is thus validated from a clinical point of vigweely available for research purposes on
http://1aurentnaj man. org/ heart, it is a first step towards a fair evaluation and comparisom\6f
segmentation methods. In the future, we plan to enrich thtalzhse with subsequent images and other
modalities, as soon as these data are validated from aatlpomt of view. We also plan to include anatomo-
pathological animal data (using rabbits and pigs).

The authors would like to emphasize that such a work is ondgibte if cardiologists and computer scientists
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are working together in close partnership.
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