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Before we start

� How are we doing?
� Questions?
� Concerns?
� Tutorial problems?

� Programming problems?
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Syllabus

1. Introduction, image perception and representation

2. Enhancements – Histogram & pixelwise transforms.

3. Transforms – FFT, Laplace, Z, Hough.

4. Filtering – Linear �lters.

5. Segmentation I

6. Segmentation II

7. Applications
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What are transforms?

Let I be an image represented as a function,I : IR n �! IR ,
ThenT , a transform, is simply an operator onI :

J = T (I )

In practice however most operators are not called “transforms” ; this
term is derived from “integral transforms” of which the FOURIER and
LAPLACE transforms are parts of.
By extension, transforms are those that de�ne broad classes of
operators, and/or which allows for a differentrepresentationof the
same data using different bases.
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Example of transforms relevant to IP

� FOURIER transform and its derivatives: DFT, FFT.
� Discrete cosine transform (DCT): used in coding (JPEG).
� KARHUNEN-LO �EVE transform (KLT): optimal coding.
� LAPLACE and Z transforms: exponential �lters (1D).
� HOUGH transform: line and curve detection.
� Wavelet transforms: coding, �ltering, texture representation.
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The FOURIER transform
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Background

� Named after JEAN BAPTISTE JOSEPHFOURIER (b. 1768)
� 1807: memoir, 1822: Book: “Théorie Analytique de la Chaleur”.
� Translated 1878 (FREEMAN) “Analytic theory of heat”.
� Idea that periodic signals could be decomposed as series of sines

and cosines (FOURIER series)
� Idea that non-periodic but �nite-area functions can also be

represented as an integral sum of sines and cosines: the
FOURIER transform.

� Practical and useful idea that took more than 100 years to be
“digested”.

� Really took off with the advent of computers and the FFT 50
years ago.
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Periodic signals as sum of sines
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sin(x) + 2 * sin(2 * x)+ 0.6 * sin(8 * x) + 0.5 *
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Continuous FT

� The FOURIER transform is a prime example ofintegral
transform:

� Forward transform:

F (u) =
Z + 1

�1
f (x)e� j 2�ux dx

� Inverse transform:f (x) =
R+ 1

�1 F (u)ej 2�ux du

� FOURIER pairs:f (x) , F (u)
� x andu complex.

� Existence subject to:
R+ 1

�1 jf (x)jdx exists and is �nite,f has a
�nite number of discontinuities,f has bounded variations.
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2D FOURIER transform

Let f (x; y) be a 2D image, a functionIR 2 �! IR . Its FOURIER

transform can be derived in the following fashion (separability):

F1(u; y) =
Z + 1

�1
f (x; y)e� j 2�xu dx

F (u; v) =
Z + 1

�1
F1(u; y)e� j 2�yv dy

=
Z + 1

�1

� Z + 1

�1
f (x; y)e� j 2�xu dx

�
e� j 2�yv dy

=
Z + 1

�1

Z + 1

�1
f (x; y)e� j 2� (xu + yv)dxdy

Similarly: f (x; y) =
R+ 1

�1

R+ 1
�1 F (u; v)ej 2� (xu + yv)dxdy
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Discrete FOURIER transform

Let f be a discrete function[0; M [� ZZ �! IR , then its DFT is given
by

F (u) =
M � 1X

x=0

f (x)e� j (2�xu )=M

Similarly as before, the inverse DFT is given by:

f (x) =
M � 1X

x=0

F (u)ej (2�xu )=M

� Q1: how many operations to compute the DFT (as a function ofM )?

� Q2: is existence a problem?

� Q3: 2D versions?
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Warning: be alert (not alarmed)

� We'll use the continuous FOURIER transform (CFT) or the DFT
somewhat interchangably.

� We'll show proofs on the CFT if convenient.
� We'll use the 1-D DFT for basic properties, moving to 2-D and

more later.
� We'll try to repeat things in different contexts (1-D, 2-D,

continuous/discrete).
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Frequency domain

� Other way to write the DFT:

F (u) =
M � 1X

x=0

f (x)[cos(2�ux=M ) � jsin (2�ux=M )]

� Each term ofF is the sum of all values off weighted by sines
and cosines of various frequencies.F is thefrequency domain
representation off .

� Polar representation:

F (u) = kF (u)ke� j� (u) ;

kF (u)k =
�
Re(F (u))2 + Im(F (u))2� 1=2

; � (u) = tan � 1
�

Im(F (u))
Re(F (u))

�
:
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Note on sampling

� We samplef (x) atx = 0 ; 1; 2; :::
� These arenotnecessarily integer samples. The sampling is

uniform of width � x but arbitrary, we mean:

f (x) = f (x0 + x � � x)

� Similarly, F (u) is also sampled, but always starts at zero, i.e:

F (u) = F (u� u)

� We have the following relationship between samplings:

� u =
1

M � x

� The DFT does not have in�nite domain: assumption of
periodicity.
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Example on periodic signal

x <- seq(0,2 * pi,length=1024)
s <- sin(x) + 2 * sin(2 * x)+ 0.6 * sin(8 * x) + 0.5 * cos(12
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DFT output analysis

Raw DFT Output of preceding signal looks likes this:
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Need to recenter the signal, only plot useful bits:
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Analysis of periodic signal:

Signal:s = sin(x) + 2 * sin(2 * x)+ 0.6 * sin(8 * x) + 0.5 * cos(12 * x)
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dft(s)[1] = (0 ; 0); dft(s)[2] = (0 :5; � �= 2);

dft(s)[3] = (1 ; � �= 2); dft(s)[9] = (0 :3; � �= 2); dft(s)[13] = (0 :25; 0)
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Non-periodic example: step

x <- seq(0,0,length=1024)
x[0:32] <- 1
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Non-periodic example

DFT of a step:
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Close form CFT of the box function

Let f be the box function:

f (x) = 1 if 1 � x � � 1

f (x) = 0 otherwise

F (f (x))( u) =
Z + 1

�1
f (x)e� j 2�xu dx

=
Z +1

� 1
e� j 2�xu dx

=
1

� j 2�u

�
e� j 2�xu � +1

� 1

=
sin 2�u

�u
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Properties of the FOURIER transform

� Linearity: F (a:f + b:g) = a:F (f ) + b:F(g) (from linearity of
the integral)

� Translation invariance:f (x � x0) , e� j 2�x 0 uF (u).
note thatkF (f (x � x0))k = kF (f (x))k.

� ConverselyF (u � u0) , f (x)ej 2�u 0 x . Useful for recentering
the DFT.

� in discrete form:f (x)ej 2�xu 0 =M , F (u � u0)
� if u0 = M=2; ej 2�xu 0 =M = ej�x = ( � 1)x

� then,f (x)( � 1)x , F (u � M=2).

� FOURIER transform of the derivative:F ( dn f
dxn ) = (2 �ju )nF (f )

� Derivative of the FOURIER transform:

dnF (f (x))( u)
dun = ( � 2�jx )nF (f (x))( u)
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Proof of the derivative property

F (
df
dx

)(u) =
Z + 1

�1

df (x)
dx

e� j 2�xu dx

Z
a

0

b = [ ab] �
Z

ab
0

(integration by part)

=
�
fe � j 2�xu � x=+ 1

x= �1 �
Z + 1

�1
f (x)( � j 2�u )e� j 2�ux dx

= 0 + j 2�u
Z + 1

�1
fe � j 2�ux dx

= j 2�uF (f )(u)

Note that:
R+ 1

�1 jf jdx < + 1 ) f (�1 ) = f (+ 1 ) = 0

Repeat the process to get the �nal result:F ( dn f
dxn ) = (2 �ju )nF (f ).
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2-D DFT

� Forward 2-D DFT

F (u; v) =
1

MN

M � 1X

x=0

N � 1X

y=0

f (x; y)e� j 2� (ux=M + yv=N )

� Inverse 2-D DFT

f (x; y) =
M � 1X

x=0

N � 1X

y=0

F (u; v)ej 2� (ux=M + vy=N )

� Polar version

kF (u; v)k =
�
Re(F (u; v))2 + Im(F (u; v))2� 1=2

� (u; v) = tan � 1
�

Im(F (u; v))
Re(F (u; v))

�
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Properties of the 2-D DFT

� DC component:

F (0; 0) =
1

MN

M � 1X

x=0

N � 1X

y=0

f (x; y)

� Symmetry:

F (u; v) = F � (� u; � v); thereforekF (u; v)k = kF (� u; � v)k

� Sampling:� u = 1
M � x ; � v = 1

N � y

� Re-centering:f (x; y)ej 2� (u0 x=M + v0 y=N ) , F (u � u0; v � v0)
(Q:how?)

� Translation invariance:
f (x � x0; y � y0) , F (u; v)e� j 2� ( ux 0

M
+ vy 0

N
) (Q:why?)
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Properties of the 2-D DFT (2)

� Linear (as in the 1-D case)
� Scaling:F (a:f ) = a:F (f )
� Distributivity: F (f + g) = F (f ) + F (g)
� f (ax; by) , 1

jabj F (u=a; v=b)

� Note: F (f:g ) 6= F (f ):F (g)
� Rotation in spatial and frequency domain linked. Let:

x = r cos�; y = r sin �; u = ! cos�; v = ! sin �

Thenf (x; y) andF (u; v) becomef (r; � ) andF (!; � )
respectively, and:

f (r; � + � 0) , F (!; � + � 0)

(using the FOURIER transform in Polar coordinates).
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Properties of the 2-D DFT (3)

� Periodicity:

F (u; v) = F (u + M; v ) = F (u; v + N ) = F (u + M; v + N )

f (x; y) = f (x + M; y ) = f (x; y + N ) = f (x + M; y + N )

� Spectrum centered on origin (need to recenter):

F (u; v) = F � (� u; � v) =) j F (u; v)j = jF (� u; � v)j

To re-center, multiplyf (x; y) by (� 1)x+ y .
� Separability (from the continuous de�nition).
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Example periodic image

Synthetic texture image Modulus of its DFT

Image synthesized by setting random peaks (in symmetric pairs) inan
empty image, then doing an inverse DFT.
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Example non-periodic image

Box image Modulus of its DFT

Corresponding image to the step function in the 1-D case.
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Contrast problem with DFT images

DFT image After log transform

If D is the image on the left, the image on the right islog(D + 1) . This
reduces excessive contrast while keeping zeroes intact.
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DFT of an edge

Thin edge Thin edge DFT

Thick edge Thick edge DFT
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DFT of a real image

SEM micrograph its DFT

Notice: strongs edges at 45o, extrusions, and corresponding features in
the DFT.
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Filtering in the frequency domain
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Convolutions

� Continuous convolution (1-D):

(f � g)(x) =
Z + 1

�1
f (h)g(x � h)dh

Here is an animation, here is another one
� in 2-D discrete,f andg both of sizeM � N :

f (x; y) � g(x; y) =
1

MN

M � 1X

m=0

N � 1X

n=0

f (m; n)g(x � m; y � n)

� Equivalentto weighted moving average.
� Q: in the spatial domain, how many operations are needed for

convolving twoN � N images?
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Convolution and FOURIER transform

� Convolution theorem: Letf; g be a function pair andF; G their
FOURIER transforms, then:

f (x; y) � g(x; y) , F (u; v):G(u; v)

and

f (x; y):g(x; y) , F (u; v) � G(u; v)

Where: is the element-by-element standard multiplication.
� if

f (x; y) � h(x; y) , F (u; v) � H (u; v)

Then
h(x; y) , H (u; v)

A �lter designed in frequency domain yields a �lter in the spatial
domain, and vice-versa.
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Proof of the convolution theorem (1-D)

Fu(( f � g)(x))( u) =
Z + 1

�1
(f � g)(x)e� j 2�xu dx

=
Z + 1

�1

� Z + 1

�1
f (h)g(x � h)dh

�
e� j 2�xu dx

=
Z + 1

�1
f (h)

� Z + 1

�1
g(x � h)e� j 2�xu dx

�
dh

=
Z + 1

�1
f (h)

� Z + 1

�1
g(x � h)e� j 2� (x� h)udx

�
e� j 2�hu dh

=
Z + 1

�1
f (h)G(u)e� j 2�hu dh

= G(u):
Z + 1

�1
f (h)e� j 2�hu dh

= G(u):F (u)
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Steps for filtering using the DFT

1. Forward DFT of the input image;

2. Recenter;

3. Design of �lter;

4. Padding to avoid edge effects;

5. Product of DFT and �lter. If �lter is real, leaves the phase intact;

6. Decenter;

7. Inverse DFT;

8. Remove padding.

Q: in the frequency domain, how many operations are needed for
convolving twoN � N images?
For �lter design, it is useful to remember that the FOURIER transform
of a Gaussian is a Gaussian.
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FOURIER transform of a Gaussian is a Gaussian

First:

F (� 2�jxf (x))( u) =
Z + 1

�1
� 2�jxf (x)e� 2�jxu dx =

Z + 1

�1
f (x)

d

du
(e� 2�jxu )dx

=
d

du
F (f (x))( u) = � 2�jxF (f (x))( u)

Then, if f = e� ax 2
is a Gaussian (a is positive real):df ( x )

dx = � 2axf (x) We take the
FOURIER transform of both sides:

F (
df (x)

dx
)( u) = 2 �juF (u) ( derivative of a FOURIER transform)

F (� 2axf (x))( u) =
a

�j
F (� 2�jxf (x)) =

a

�j

d

du
F (f (x))( u) ( above)

putting things together:

2�juF (f (x))( u) =
a

�j

d

du
(F (f (x))( u))

d

du
(F (f (x))( u)) = �

2� 2

a
uF (f (x))( u) = )




 F (u) =

r
�

a
e� 2 � 2

a u 2
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Example of simple convolution

Corrupted text
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Example of simple convolution

Filtered text
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Example of simple convolution

DFT of text
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Example of simple convolution

Low-pass �lter using Gaussian
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Example of non-trivial convolution

Corrupted Moon scene
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Example of non-trivial convolution

Filtered Moon scene
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Example of non-trivial convolution

DFT of corrupt scene
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Example of non-trivial convolution

Designed �lter
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The Fast Fourier Transform
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History of the FFT

� Invented by C.F. Gauss in 1803, for doing astronomy-related
hand calculation. Never published (found in notes).

� First modern algorithm attributed to Cooley and Tukey, 1963,
IBM. IBM thought the algorithm was so important they decided
to put it immediately in the public domain.

� Many implementations exist.
� A good one: FFTW, the Fastest FOURIER Transform in the West.
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Decimation in time

Assume we want to do a DFT of a length which is a power of 2, i.e:
M = 2 n . The DFT is written:

F (u) =
M � 1X

x=0

f (x)e� j (2�xu )=M

We do the sums in two halves:

F (u) =

M
2

� 1X

x=0

f (2x)e� 2j� (2x)u=M +

M
2

� 1X

x=0

f (2x + 1) e� 2�j (2x+1) u=M

=

M
2

� 1X

x=0

f even(x)e� 2j�xu= (M=2) + e� 2�ju=M :

M
2

� 1X

x=0

f odd(x)e� 2j�xu= (M=2)
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What have we gained?

� Seeminly nothing much, however...
� Now we are doing twoM=2-length DFTs instead of a single

M -length DFT.

� This means instead of doingM 2 operations, we do
2 � ( M

2 )2 = M 2

2 operations.

� Why stop here? Indeed we can decimate the twoM=2 DFTs
again, and so on recursively.

� In the �nal recursive structure, there aren = log 2(M ) levels.
� At each levels there areM operations to perform.
� The �nal number of operations is

M: log2(M )

� Note: there are algorithms that are not limited to2n vector
lengths (Singleton 1969).
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What difference does it make?
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Conclusion
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What have we learned?

� Transforms are a change of basis representation. They allow to
represent thesamedata in a different way.

� One very important tranform is the FOURIER transform and its
discrete equivalent the DFT.

� The FOURIER transform allows users to represent the data in the
frequency domain, like a prism for light.

� We can now do 1-D and 2-D DFTs
� The DFT allows users to compute convolution more quickly and

easily.
� We learned how to do useful �lterings using the DFTs do do

enhancements using the frequency domain.
� There exists an ef�cient implementation of the DFT: the Fast

FOURIER Transform, which makes all the previous operations all
the more worthwhile.
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