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Before we start

How are we doing?
Questions?
Concerns?

Tutorial problems?
Programming problems?
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Syllabus

Introduction, image perception and representation
Enhancements — Histogram & pixelwise transforms.
. Transforms — FFT, Laplace, Z, Hough.

Filtering — Linear lters.

Segmentation |

Segmentation |l

Sl en s DA e SO S A

Applications
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What are transforms?

Letl be animage represented as a functionR" ! R,
ThenT, a transform, is simply an operator bn

J=T()

In practice however most operators are not called “transforms” ; this
term is derived from “integral transforms” of which th®BRIER and

L APLACE transforms are parts of.

By extension, transforms are those that de ne broad classes of
operators, and/or which allows for a differeapresentatiorof the

same data using different bases.

imaaqe processing, transforms — p. 4/46



Example of transforms relevant to IP

FOURIERtransform and its derivatives: DFT, FFT.

Discrete cosine transform (DCT): used in coding (JPEG).
KARHUNEN-LOEVE transform (KLT): optimal coding.
LAPLACE and Z transforms: exponential Iters (1D).

HouGH transform: line and curve detection.

Wavelet transforms: coding, ltering, texture representation.
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The FOURIER transform
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Background

Named after AN BAPTISTE JOSEPHFOURIER (b. 1768)
1807: memoir, 1822: Book: “Théorie Analytique de la Chaleur”.
Translated 1878 (REEMAN) “Analytic theory of heat”.

ldea that periodic signals could be decomposed as series of sine
and cosines (BURIER series)

|ldea that non-periodic but nite-area functions can also be
represented as an integral sum of sines and cosines: the
FOURIERtransform.

Practical and useful idea that took more than 100 years to be
“digested”.

Really took off with the advent of computers and the FFT 50
years ago.
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Periodic signals as sum of sines
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S.ID(X) + 2 * SIN2—*x)+ 0.6 *xsSin(8 *x) + 0.5 = I
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Continuous FT

The FOURIERtransform is a prime example oftegral
transform:

Forward transform:
VA

F(u) = f(x)e 121 dx
1

R |
Tt F(u)e?2U du

FOURIER pairsf (x) , F(u)

Inverse transfornfi:(x) =

X andu complex.

R
Existence subject to: Jl“ ! jf (x)jdx exists and is nitef has a
nite number of discontinuitiesf has bounded variations.
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2D FOURIER transform

Letf (x;y) be a 2D image, afunctioR?! R. Its FOURIER
transform can be derived in the following fashion (separability):

Z .. |
Fi(ujy) = f(x;y)e 12X dx
1
Z,. |
F(uv) = Fi(u;y)e 2%V dy
Z,, Z.,
= f(x;y)e 12 dx e 12¥ dy
Zl+1 . +11
= f(x;y)e 12 CUTW)gxdy
11

R.. R .
Similarly: f (;y)= ;7 ;1 F(u;v)e? <U*Wdxdy
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Discrete ©OURIER transform

Let f be a discrete functiofp; M[ Z! R,thenits DFT is given
by
W 1
Fuy=  f(x)e lEx)™M
x=0

Similarly as before, the inverse DFT is given by:
W 1

f(x)=  F(ue@x)™
x=0

Q1: how many operations to compute the DFT (as a functidv P
Q2: is existence a problem?

Q3: 2D versions?
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Warning: be alert (not alarmed)

We'll use the continuous GURIER transform (CFT) or the DFT
somewhat interchangably.

We'll show proofs on the CFT if convenient.

We'll use the 1-D DFT for basic properties, moving to 2-D and
more later.

We'll try to repeat things in different contexts (1-D, 2-D,
continuous/discrete).
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Frequency domain

Other way to write the DFT:

W 1
F(u) = f (X)[cog2 ux=M ) jsin (2 ux=M )]
x=0

Each term of is the sum of all values df weighted by sines
and cosines of various frequenciésis thefrequency domain
representation df.

Polar representation:
F(u) = kF(u)ke | (W:

— 2 2 1=2 — Im(F (u))
KF(Wk= Re(F(U)+ Im(F()* ™ (W=tan = Zo=rs
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Note on sampling

We sampld (x) atx =0;1,; 2; :::

These aremot necessarily integer samples. The sampling is
uniform of width x but arbitrary, we mean:

f(X)=f(Xo+ X X)
Similarly, F (u) is also sampled, but always starts at zero, I.e:
F(u=F(u u)
We have the following relationship between samplings:

1

u:
M X

The DFT does not have Iin nite domain: assumption of
periodicity.
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Example on periodic signal

X <- seq(0,2 =*pilength=1024)
S <- sin(x) + 2 * sin(2 *x)+ 0.6 *sin(8 *x) + 0.5 * cos(12

0 200 400 600 800 1000

Index
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DFT output analysis

Raw DFT Output of preceding signal looks likes this:

1.0

mfsig
0.6
L

0.4

0.2
|

0.0

0 200 400 600 800 1000

Index

Need to recenter the signal, only plot useful bits:
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Analysis of periodic signal:

Signalis = sin(x) + 2+ sin@2 *x)+ 0.6 *sin(8 *x) + 0.5 * cos(12 *Xx)

1.0

0.8

1

0.6

mrfsig[l/2 + x +
0.4

0.2
]
]
]
]

0.0

dt(s)[1] = (0 : 0): dft(s)[2] = (0 :5; = 2):

dft(s)[3] = (1 ; = 2);dft(s)[9] = (0 :3; = 2):dft(s)[13] = (0 :25;0)
|
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Non-periodic example: step

X <- sed(0,0,length=1024)
X[0:32] <- 1

1.0
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Non-periodic example

DFT of a step:

20 25

recenter(Mod(fx))
15

0 200 400 600 800 1000

Index
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Close form CFT of the box function

Letf be the box function:

1 ifl x 1
O otherwise

f(x)
f (x)

Z .4

F(f (x))(u) = f(x)e 12X dx
zl+1

e j 2 xu dx
1

1 e i2xu +1
j2u 1
sin2u
u
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Properties of the BURIER transform

Linearity: F (a:f + b:g = a:F(f) + b:F(g) (from linearity of
the integral)

Translation invariancef: (x  Xg), e /2X°YF(u).
note thakkF (f (x Xg))k = kF (f (x))k.

ConverselyF (u  ug), f(x)d?2Y X Useful for recentering
the DFT.
in discrete formf (x)d 2 "M E(u  ug)

if ug= M=2;d2XUo=M = g X —( 71)X

thenf (x)( 1)*, F(u M=2).
FOURIERtransform of the derlva'[IVGF(an Y=(2 ju )"F(f)
Derivative of the BURIER transform:

d"F (f (x))(u)
dun

=( 2jx )"F(f (x)(u)
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Proof of the derivative property

Z

+ 1 _
1 dx
Z
aob = [ab ab (integration by part)
i x=+ 1 Z+1 i
= fe 12¢ "7 1 f(X)( j2u)e 12" dx
Z ,q |
= 0+ j2u fe 12U dx
1

j2uF (f)(u)

R+]_ cp -
Note that: jfjdx<+1) f(1 )=f(+1)=0
Repeat the process to get the nal resEIt(an)— (2 ju )"F(f).
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2-D DFT

Forward 2-D DFT

nee o
F(u;v) = f(xy)e 12 (et mv=r)
MN
x=0 y=0
Inverse 2-D DFT
M 1 1 .
f(x;y) = F(u;v)g?2 (WM +vy=N)
x=0 y=0
Polar version
KF(u:v)k =  Re(F(u:v)2+ Im(F(u:v)2
(U;V) = tan 1 Im(F(u,v))

Re(F (u;Vv))
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Properties of the 2-D DFT

DC component:

N x=0 y—O

F(0;0) =

Symmetry:
F(u;v)= F ( u; v); thereforekF (u;v)k = kF( u; v)k

ve L1

1 .
X! N vy

Sampling: u=
Re-centeringf (x;y)d 2 (Uox=M+Voy=N) = E(y ugv Vo)
(Q:how?)

Translation invariance: o
f(x X0y Yo), F(uv)e 12 G+ ) @Quhy?)
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Properties of the 2-D DFT (2)

Linear (as in the 1-D case)
Scaling:F (a:f) = a:F(f)
Distributivity: F(f + g) = F(f)+ F(g)
f(ax;by) , m5F(u=a;v=h
Note:F (f:g) 6 F(f ):F(g)
Rotation in spatial and frequency domain linked. Let:

X=rcos;y =rsin;u=1!cos;v =! sin

Thenf (x;y) andF (u;v) become (r; ) andF(!; )
respectively, and:

f(, + 0, F({ + o)

(using the BURIER transform in Polar coordinates).
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Properties of the 2-D DFT (3)

Periodicity:
F(uuv) = F(u+ M;v)= F(uuv+ N)= F(u+ M;v + N)

f(x;y)=f(x+My)=Ff(x;y+N)=Ff(x+ M;y + N)

Spectrum centered on origin (need to recenter):
Fuiv)=F ( u; v)=)] F(uv)j=]JF( u; V)

To re-center, multiplyf (x;y) by ( 1)**Y.
Separabillity (from the continuous de nition).
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Example periodic image

Synthetic texture image Modulus of its DFT

Image synthesized by setting random peaks (in symmetric paias) in
empty image, then doing an inverse DFT.
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Example non-periodic image

Box image Modulus of its DFT
Corresponding image to the step function in the 1-D case.
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Contrast problem with DFT images

DFT image After log transform

If D is the image on the left, the image on the righoig(D + 1) . This
reduces excessive contrast while keeping zeroes intact.
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DFT of an edge

Thin edge Thin edge DFT

Thick edge Thick edge DFT
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DFT of a real image

SEM micrograph its DFT

Notice: strongs edges at &%extrusions, and corresponding features in
the DFT.
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Filtering in the frequency domain
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Convolutions

Continuous convolution (1-D):
Z ,q

(f 9)(x)= 1 f(h)g(x h)dh

Here is an animation, herelis another'one
In 2-D discretef andg both of sizeM N

1 K 1X 1
fFOy) alxy)= ¥IN f(m;n)g(x m;y n)

m=0 n=0

Equivalentto weighted moving average.

Q: in the spatial domain, how many operations are needed for
convolving twoN N images?
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http://commons.wikimedia.org/wiki/File:Convolucion_Funcion_Pi.gif
http://mathworld.wolfram.com/images/gifs/convgaus.gif

Convolution and BURIER transform

Convolution theorem: Ldt g be a function pair an#é&; G their
FOURIERtransforms, then:

fOy) a(xy), F(u;v):G(u;v)

and

f(Gy)axy), F(uv) G(u;v)

Where: is the element-by-element standard multiplication.
If
f(x;y) h(xsy), F(uiv) H(uv)
Then
h(x;y), H(u;v)

A lter designed in frequency domain yields a Iter in the syt
domain, and vice-versa. ,
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Proof of the convolution theorem (1-D)

Fu((f

9)(x))(u)

(f  g)(x)e 12X dx
f (h)g(x h)dh e 1%*Y dx
f (h) g(x h)e 12XV dx dh

f (h) g(x h)e 12 x Mugy g I2hu gh
1 1

f (h)G(u)e 12" dh

Z .4

G(u): f (h)e 12N dh
1
-.(ll):lz(ll\ |

1

(

A L Ull I
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Steps for filtering using the DFT

Forward DFT of the input image;

Recenter,;

Design of lter;

Padding to avoid edge effects;

Product of DFT and lter. If Iter is real, leaves the phaseant;
Decenter;

Inverse DFT,

CEE G TS (0 D

Remove padding.

Q: in the frequency domain, how many operations are needed for
convolvingtwoN N images?

For Iter design, it is useful to remember that the BRIER transform
of a Gaussian is a Gaussian.
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FOURIER transform of a Gaussian I1s a Gaussian

First:

VA + 1 ) VA +1 d )
2ixf (x)e 2P dx = f(x)—(e 2™ )dx
1 1 du

d .
= G FEe(w = 2ixF (feO)(u)

F(C 2)xt (x))(u)

Then, iff = e ax? g a Gaussiang(is positive real):dd(xx) = 2axf (x) We take the
FOURIER transform of both sides:

d (x)

F( ix J(u) = 2 juF (u) (derivative of a ®URIERtransforn)
F( 2axf (X))(u) = jiF( 2ixf (X)) = ji%F(f (x))( u) (abovd
putting things together:
: B a d
2juF (F(x)(u) = TE(F(f (x))(u))
d 2 2 "= 2 2 2
E(F(f (x)(u)) = TuF(f (x)N(u)=)  F(u)= ZE C :
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Example of simple convolution

Historicaliy, cartain computer
programs were written using
only two digits rather than
four to define the applicable
year. Accordingly, the
cempany's software may
regognize a date using 00"
as 1900 rather than the vear
20060,

Corrupted text
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Example of simple convolution

Historically, certain computer
programs were written using
only two digits rather than
four to define the applicable
year. Accordingly, the
company's software may
recognize a date using "00"
as 1900 rather than the yeer
2000.

Filtered text
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Example of simple convolution

DFT of text
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Example of simple convolution

Low-pass Iter using Gaussian
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Example of non-trivial convolution

—. Arda
S

a1 dn TH
LI s _t“.._u".-

Co T e o

s

Corrupted Moon scene
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Example of non-trivial convolution

Filtered Moon scene

imaage processing, transforms — p. 39/46



Example of non-trivial convolution

DFT of corrupt scene
|
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Example of non-trivial convolution

Designed lter
|

imaage processing, transforms — p. 39/46



The Fast Fourier Transform
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History of the FFT

Invented by C.F. Gauss in 1803, for doing astronomy-related
hand calculation. Never published (found in notes).

First modern algorithm attributed to Cooley and Tukey, 1963,
IBM. IBM thought the algorithm was so important they decided
to put it immmediately in the public domain.

Many implementations exist.
A good one: FFTW, the FastesbBRIER Transform in the West.
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Decimation in time

Assume we want to do a DFT of a length which is a power of 2, i.e:
M =2". The DFT is written:

% 2 .
F(uy=  f(x)e X)WV
x=0

We do the sums in two halves:

X ? X ?
F(U) — f(2x)e 2] (2x)u=M f(2X + 1)e 2j (2x+1) u=M
x=0 x=0
X ? X ?
— fever(x)e 2] xu= (M=2) + e 2 ju=M : fodd(x)e 2] xu= (M=2)

x=0 X =0
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What have we gained?

Seeminly nothing much, however...

Now we are doing twdl=2-length DFTs instead of a single
M -length DFT.

This means instead of doirlg 2 operations, we do
2 (M2 = MZ operations.

Why stop here? Indeed we can decimate theMw® DFTs
again, and so on recursively.

In the nal recursive structure, there ame= log ,(M ) levels.
At each levels there atd operations to perform.
The nal number of operations is

M: log,(M)

Note: there are algorithms that are not limitedtovector
lengths (Singleton 1969). |

imaage processing, transforms — p. 43/46



What difference does it make?

100 150
L !

ratio N*2/(N.LogN)

50

I I I I
0 500 1000 1500 2000
Length of data vector
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Conclusion
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What have we learned?

Transforms are a change of basis representation. They allow to
represent theamedata in a different way.

One very important tranform is thedf®wRIER transform and its
discrete equivalent the DFT.

The FOURIER transform allows users to represent the data in the
frequency domain, like a prism for light.

We can now do 1-D and 2-D DFTs

The DFT allows users to compute convolution more quickly and
easily.

We learned how to do useful Iterings using the DFTs do do
enhancements using the frequency domain.

There exists an ef cient implementation of the DFT: the Fast
FOURIER Transform, which makes all the previous operations all
the more worthwhile.
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