The problem of over-fitting

Over-fitting
How to detect it
How to fight it

Over-fitting (1/3)

- Training allows the network to learn its parameters
 - $\theta = W^{(1)}, W^{(2)}, ..., W^{(L)}$
- But only after the hyper-parameters are fixed...
 - □ L → Number of layers in the neural network
 - \square $M_I \rightarrow$ Number of units in each layer
 - $g^{(l)} \rightarrow Activation function for each layer$
 - ... (and many others)

2

Hyper-parameters are difficult to guess on the first attempt

Over-fitting (2/3)

- What is the impact of hyper-parameters on learning?
 - □ Under-fitting → The prediction is too far from the training data
 - □ Over-fitting → The prediction is too close to the training data

Small network

Medium network

Big network

Over-fitting (3/3)

- Learning aims at achieving a good generalization
 - □ The model must perform well on never-before-seen data
- Over-fitting is an obstacle to generalization
 - □ Learning → The model fits very well the training data...
 - □ Prediction → ... but it is unable to generalize to new data.

Nothing useful is being learned here

The model is distracted by some outliers, instead of following the general trend of data.

How to detect over-fitting (1/4)

It is not advised to evaluate the model on the training data

$$J_{\text{train}}(\widehat{\theta}) = \frac{1}{N} \sum_{n=1}^{N} C(f_{\widehat{\theta}}(\mathbf{x}^{(n)}), y^{(n)})$$

□ Warning → This estimate is biased toward over-fitting !!!

5

How to detect over-fitting (2/4)

- It is better to evaluate the model on fresh data
 - □ Train set → Used for training the model
 - □ Test set → Used for detecting over-fitting

Dataset

How to detect over-fitting (3/4)

- Over-fitting can be detected on the test set
 - □ Regression → Model evaluated on mean square error
 - □ Classification → Model evaluated on classification error

	Low bias	High bias (under-fitting)	
Low variance	Err _{Train} = 0.5 %	Err _{Train} = 17.0 %	Small gap in performance
	Err _{Test} = 1.0 %	Err _{Test} = 18.3 %	
High Variance (over-fitting)	Err _{Train} = 1.0 %	Err _{Train} = 15.0 %	→ Big gap in performance
	Err _{Test} = 19.3 %	Err _{Test} = 30.0 %	
	•		
Small error on training		Big error on train	ning

How to detect over-fitting (4/4)

- Over-fitting can be also monitored during training
 - □ Train cost → How well the model fits the training data
 - □ Test cost → How well the model performs on new unseen data

8

How to fight over-fitting (1/3)

- The underlying causes of under-fitting
 - □ Simple model → Prediction close to linear, few parameters, ...
 - □ Low dimension → Features are not enough to make a prediction

- The underlying causes of over-fitting
 - □ Complex model → Prediction highly nonlinear, a lot of parameters, ...
 - □ High dimension → There are too many features
 - □ Lack of data → The train set is too small w.r.t. the parameters to learn

How to fight over-fitting (2/3)

Bias and variance reduction can be tackled separately

How to fight over-fitting (3/3)

- Can we avoid over-fitting only with more training data?
 - The amount of data grows exponentially with the dimensionality
 - At some point, we can't add enough data to prevent over-fitting

Quiz (1/3)

In which figure the model has overfit or underfit the training set?

Quiz (2/3)

- What does it mean that a model f_θ has <u>overfit</u> the data?
 - 1. It makes accurate predictions for examples in the training set, and generalizes well to make accurate predictions on new examples.
 - 2. It doesn't makes accurate predictions for examples in the training set, but it generalizes well to make accurate predictions on new examples.
 - 3. It makes accurate predictions for examples in the training set, but it doesn't generalizes well to make accurate predictions on new examples
 - 4. It doesn't make accurate predictions for examples in the training set, and doesn't generalizes well to make accurate predictions on new examples.

Quiz (3/3)

- Suppose your neural network obtains a train set error of 0.5%, and a test set error of 7%.
- What should you try to improve the performance?
 - 1) Increase the number of units in each hidden layer
 - 2) Add regularization
 - 3) Use a deeper neural network
 - 4) Get more test data
 - 5) Get more training data

What we have seen so far...

Bias-variance tradeoff

- Over-fitting is the obstacle to generalization
- Use a test set to detect over-fitting (or under-fitting)
- Recipes to reduce bias and variance

Regularization

Norm penalization Early stopping Dropout

Over-fitting

- How to reduce over-fitting?
 - □ Option 1 → Add more training data
 - This is always beneficial, but it could be expensive to get more data
 - □ Option 2 → Simplify the model
 - Reduce the network parameters by using less units and layers
 - The risk is to increase the bias
 - □ Option 3 → Apply regularization
 - Keep the complexity, but reduce the model's degrees of freedom
 - This diminishes somewhat the capacity to fit the training data
 - A big variance reduction is traded for a small bias increase

Norm penalization (1/3)

- Norm penalization → Small values for parameters θ₁,...,θ_M
 - The cost function is modified as follows:

$$J(\theta) = \sum_{n=1}^{N} C(f_{\theta}(\mathbf{x}^{(n)}), \mathbf{y}^{(n)}) + \lambda \sum_{m=1}^{M} |\theta_{m}|^{p}$$

□ Now, the cost function is minimized for smaller values of $\theta_1,...,\theta_M$

$$J(\theta) \to 0 \qquad \Leftrightarrow \qquad \theta_1 \to 0, \dots, \theta_M \to 0$$

- □ Small values for θ₁,...,θ_M correspond to a simpler model
- □ A simpler model is less prone to over-fitting and more to under-fitting

Norm penalization (2/3)

- The penalization gets rid of some network connections
 - The connections to be removed are identified during training

Norm penalization (3/3)

- The hyper-parameter λ controls the tradeoff of two goals
 - Fitting the train set
 - Keeping a simple model
- Warning \rightarrow The choice of λ is critical
 - If λ is very large, all the model parameters end up being close to zero

$$\lambda \to +\infty \qquad \Rightarrow \qquad \theta_1 \approx 0, \dots, \theta_M \approx 0$$

In this case, the model is under-fitting, as we get rid of all the network connections

Early stopping (1/2)

- Early stopping → Halt when generalization stops improving
 - □ Training is halted when the **performance on test set** begins to degrade

Early stopping (2/2)

- The magnitude of $\theta_1, \dots, \theta_M$ increases during training
 - □ At the beginning → $\theta_1,...,\theta_M$ are just initialized to small values
 - □ Toward the end $\rightarrow \theta_1,...,\theta_M$ get bigger and bigger to fit the training data

Dropout

- Dropout → Nodes are randomly removed during training
 - The output of random nodes is temporarily set to zero (for one iteration)
 - □ The **dropout rate** is the fraction of nodes that are zeroed out
 - Why it works? At test time, all the nodes are kept. This is equivalent to averaging the output of all the networks randomly created during training

Quiz

- What happens when you increase the hyper-parameter λ?
 - 1) Weights are pushed toward becoming smaller (closer to 0)
 - 2) Weights are pushed toward becoming bigger (further from 0)
 - 3) Doubling lambda should roughly result in doubling the weights
 - 4) Gradient descent taking bigger steps with each iteration
- What will likely happen when you increase the dropout rate?
 - 1) Increasing the regularization effect
 - 2) Reducing the regularization effect
 - 3) Causing the neural network to end up with a higher training set error
 - 4) Causing the neural network to end up with a lower training set error

What we have seen so far...

Three types of regularization

Norm penalization

Dropout

Hyper-parameter tuning

Hyper-parameters

Cross-validation

Sampling strategies

Hyper-parameters (1/2)

- Firstly, the hyper-parameters must be fixed...
 - □ L → Number of layers in the neural network
 - □ M_I → Number of units in each layer
 - $g^{(l)} \rightarrow Activation function for each layer$
 - □ λ → Regularization
 - $\neg \alpha_i \rightarrow Step-size in gradient descent$
 - □ I_{max}→ Iterations in gradient descent
 - □ ... (and many others)

- Then, the parameters can be learned via training

Hyper-parameters (2/2)

- How to find the best values for the hyper-parameters?
 - Difficult to know in advance what are the best values
 - Unlike parameters, they can be hardly estimated through optimization
 - Instead, they are found by a trial and error process
 - 1) Fix a set of values
 - 2) Train the network (on the train set)
 - 3) Evaluate the performance (on the valid set)
 - 4) Repeat 1-3 for different values
 - 5) Select the best ones

Cross-validation (1/2)

- For the evaluation, the dataset is split in three chunks
 - □ Train set → Used for training the model
 - □ Valid set → Used for choosing the best hyper-parameters
 - □ Test set → Used for detecting over-fitting

Dataset

Cross-validation (2/2)

- Training data can be shaken up for a better evaluation
 - Divide your data in K partitions of equal size
 - For each partition, use it as the valid set and the rest for training
 - Your final score is the average of the K scores obtained

Hyper-parameter sampling (1/3)

- How to select a set of values to explore?
 - □ Uniform sampling → Use a regular grid of points
 - □ Random sampling → Choose points at random (in a given range)

Hyper-parameter sampling (2/3)

Advice → Use a coarse to fine sampling scheme

Hyper-parameter sampling (3/3)

- Advice → Consider also a logarithmic scale for sampling
 - In some cases, the log scale is better than the linear one

Quiz

• Which of the following statements are true?

- 1) If searching among a large number of hyper-parameters, you should try values in a grid rather than random values, so that you can carry out the search more systematically and not rely on chance.
- 2) Every hyper-parameter, if set poorly, can have a huge negative impact on training, and so all of them are about equally important to tune well.
- 3) Finding good hyper-parameter values is very time-consuming. So you should do it once at the start of the project, and try to find very good values, so that you don't ever have to revisit tuning them again.
- 4) If you think that the step-size (hyper-parameter for gradient descent) is between 10⁻³ (= 0.001) and 10⁻¹ (= 0.1), the recommended way to sample its possible values consists of using a logarithmic scale.

What we have seen so far...

Hyper-parameter search

- Use a validation set to find the best hyper-parameters
- Random sampling is superior to uniform grid search
- Use a logarithmic scale when it is appropriate (e.g., for step-size)

Advanced optimization

Stochastic gradient descent Normalized gradient descent State-of-the-art

Stochastic gradient descent (1/4)

Standard gradient descent

The loss function contains a term for every single example (x(n),y(n))

$$J(\theta) = \sum_{n=1}^{N} \mathcal{C}\Big(f_{\theta}(\mathbf{x}^{(n)}), \mathbf{y}^{(n)}\Big)$$
 All data

This can be a lot to compute for gradient descent, as it needs to go through all data at each iteration

$$\theta^{[i+1]} = \theta^{[i]} - \alpha_i \sum_{n=1}^{N} \nabla C(f_{\theta^{[i]}}(\mathbf{x}^{(n)}), \mathbf{y}^{(n)})$$

Training set

3 000	
X ⁽¹⁾	y ⁽¹⁾
X ⁽²⁾	y ⁽²⁾
$X^{(3)}$	y ⁽³⁾
X ⁽⁴⁾	y ⁽⁴⁾
X ⁽ⁿ⁾	y ⁽ⁿ⁾
X ^(N)	y ^(N)

Stochastic gradient descent (2/4)

Stochastic gradient descent

At each iteration, select a block of training data

Then, compute the gradient w.r.t. the selected block

 $\chi(1)$ **y**(1)

 $\mathbf{X}(N)$

y(2) $\chi(2)$ $\chi(3)$ **V**(3) $\chi(4)$ **V**(4)

Training set

 $\chi(N-1)$ $V^{(N-1)}$

V(N)

Block B

		F]
$\theta^{[i+1]} = \theta$	$^{[i]} - \alpha_i \nabla J^{[i]}$	$(heta^{\lfloor i floor}) racksquare$

Important → After a complete sweep, randomly shuffle the training set

Stochastic gradient descent (3/4)

- Stochastic gradient approximates the "true" gradient
 - Hence, it does not indicate the right descent direction
 - We compensate by taking many smaller steps (instead of few large ones)

Gradient descent

Stochastic gradient descent

Stochastic gradient descent (4/4)

- SGD needs to take many steps to ensure convergence
 - □ Advice 1 → Decrease the step-size over time
 - □ Advice 2 → The initial step-size α_0 can be larger

Giovanni Chierchia

Saddle points and plateaus (1/3)

- Neural network cost function is non-convex
 - Local minima dominate in shallow networks
 - Saddle points dominate in deep networks
 - Most local minima are close to the bottom (i.e., the global minimum)

□ Flat minima generalize better than sharp minima

Pictorial representation of a neural network cost function

Saddle points and plateaus (2/3)

Gradient descent gets stuck in saddle points

Saddle points and plateaus (3/3)

Gradient descent slows down on plateaus

Normalized gradient descent (1/5)

- Normalized gradient descent uses unit-length directions
 - The length travelled at each update is constant

The distance travelled at each step is exactly equal to the step-size.

- **Pros.** The descent is only attracted by minima (local or global), not by saddle points.
- **Cons.** To get infinitesimally close to the solution, the step-size must decay to zero.

Normalized gradient descent (2/5)

- Gradient descent → Normalized vs Standard
 - Normalized GD performs fixed-length updates
 - □ Standard GD performs (decreasing) variable-length updates

Normalized gradient descent (3/5)

Normalized gradient descent goes through saddle points

Normalized gradient descent (4/5)

Normalized gradient descent goes through plateaus

Normalized gradient descent (5/5)

- Normalized GD can only get so close to a minimum
 - □ The length of each step doesn't decrease while approaching a minimum
 - □ Solution → Use a decreasing step-size to get arbitrary close to a minimum

State-of-the-art: ADAM

- Modern algorithms for neural network training
 - □ First-order optimization + Stochastic + Normalization + Momentum
 - □ Example → ADAM (2015)

Quiz

- Assume you tracked the cost function J(θ) during training,
 and the plot versus the number of iterations looks like this.
 - 1) If you're using stochastic gradient descent, something is wrong. But if you're using gradient descent, this looks acceptable.
 - 2) Whether you're using standard or stochastic gradient descent, this looks acceptable.
 - 3) If you're using stochastic gradient descent, this looks acceptable. But if you're using gradient descent, something is wrong.
 - 4) Whether you're using standard or stochastic gradient descent, something is wrong.

What we have seen so far...

Accelerated gradient descent

$$\theta^{[i+1]} = \theta^{[i]} - \alpha_i \nabla J^{[i]} \big(\theta^{[i]}\big)$$
 Adaptive step-size

- Additional hyper-parameters
 - Mini-batch size
 - □ Optimization (Adagrad, RMSProp, ADAM, ...)
 - Decaying schedule for step-size

Other best practices

Data preprocessing

Batch normalization

Ensemble of networks

Data preprocessing (1/2)

- Advice → Normalize data at the network's input
 - 1) Subtract the mean across every individual feature in the data
 - 2) Divide each feature by its standard deviation (after mean subtraction)

Data preprocessing (2/2)

- Input normalization can help training go faster
 - The cost function is "strongly" elliptical
 - Normalization makes the cost function "more circular"
 - □ This transformation speeds up the optimization process

Normalization

The cost function becomes "more circular", and thus gradient descent can reach the minimum in less steps.

Batch normalization (1/2)

- Normalization can be also applied to hidden layers
 - oxdot Training igothermall Parameters $oldsymbol{\mu}^{(l)}$ and $oldsymbol{\sigma}^{(l)}$ are learned
 - □ **Testing** → Parameters $\mu^{(l)}$ and $\sigma^{(l)}$ are kept fixed

Batch normalization (2/2)

- Layer normalization speeds up the training process
 - It also helps to avoid gradient explosions

Ensemble of networks

Advice -> Train several networks and combine their outputs

1) Same model, different initialization.

Use cross-validation to determine the best hyper-parameters, then train several models with the same hyper-parameters, but with different random initialization.

2) Top models discovered during cross-validation.

Use cross-validation to determine the best hyper-parameters, then pick the models having the best-performing sets of hyper-parameters.

3) Different checkpoints of a single model.

If training is very expensive, take different checkpoints of a single network over time. For example, pick a network after a fixed number of epochs. Alternatively, start with a large step-size and a decaying schedule, train the network for a fixed time, and restart with a large step-size after saving the network. Another way is to maintain a running average of network parameters during training.

Conclusion

Over-fitting
Regularization
Hyper-parameters

The problem of over-fitting

Bias-variance tradeoff

- Over-fitting is the obstacle to generalization
- Use a test set to detect over-fitting (or under-fitting)
- Recipes to reduce bias and variance

Regularization

Effective ways to reduce overfitting

Norm penalization

Early stopping

Dropout

Hyper-parameters

How to deal with hyper-parameters

- Use a validation set to find the best hyper-parameters
- Random sampling is superior to uniform grid search
- Use a logarithmic scale when it is appropriate (e.g., for step-size)

Optimization

- Accelerated gradient descent for neural net training
 - The choice of step-size is still critical to ensure fast convergence

