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Over-fitting (1/3)

■ Training allows the network to learn its parameters  
❑ 𝞱 = W(1), W(2), …, W(L) 

■ But only after the hyper-parameters are fixed… 
❑ L   ➜ Number of layers in the neural network 

❑ Ml  ➜ Number of units in each layer 

❑ g(l) ➜ Activation function for each layer 

❑ … (and many others) 

■ Hyper-parameters are difficult to guess on the first attempt
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Over-fitting (2/3)

■ What is the impact of hyper-parameters on learning ? 
❑ Under-fitting ➜ The prediction is too far from the training data 
❑ Over-fitting   ➜ The prediction is too close to the training data
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Over-fitting (3/3)

■ Learning aims at achieving a good generalization 
❑ The model must perform well on never-before-seen data 

■ Over-fitting is an obstacle to generalization 
❑ Learning   ➜ The model fits very well the training data…  
❑ Prediction ➜ … but it is unable to generalize to new data.
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Nothing useful is being learned here 
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How to detect over-fitting (1/4) 

■ It is not advised to evaluate the model on the training data 

❑ Warning ➜ This estimate is biased toward over-fitting !!!
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How to detect over-fitting (2/4) 

■ It is better to evaluate the model on fresh data 
❑ Train set ➜ Used for training the model 
❑ Test set  ➜ Used for detecting over-fitting
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How to detect over-fitting (3/4) 

■ Over-fitting can be detected on the test set 
❑ Regression     ➜ Model evaluated on mean square error 
❑ Classification ➜ Model evaluated on classification error
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How to detect over-fitting (4/4) 

■ Over-fitting can be also monitored during training 
❑ Train cost ➜ How well the model fits the training data 
❑ Test cost   ➜ How well the model performs on new unseen data
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How to fight over-fitting (1/3)

■ The underlying causes of under-fitting 
❑ Simple model   ➜ Prediction close to linear, few parameters, … 

❑ Low dimension ➜ Features are not enough to make a prediction  

■ The underlying causes of over-fitting 
❑ Complex model ➜ Prediction highly nonlinear, a lot of parameters, … 

❑ High dimension ➜ There are too many features  

❑ Lack of data       ➜ The train set is too small w.r.t. the parameters to learn
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How to fight over-fitting (2/3)

■ Bias and variance reduction can be tackled separately
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How to fight over-fitting (3/3)

■ Can we avoid over-fitting only with more training data ? 
❑ The amount of data grows exponentially with the dimensionality 

❑ At some point, we can’t add enough data to prevent over-fitting
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Quiz (1/3)

■ In which figure the model has overfit or underfit the training set?
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Quiz (2/3)

■ What does it mean that a model fθ has overfit the data ? 

1. It makes accurate predictions for examples in the training set, and 
generalizes well to make accurate predictions on new examples. 

2. It doesn’t makes accurate predictions for examples in the training set, 
but it generalizes well to make accurate predictions on new examples. 

3. It makes accurate predictions for examples in the training set, but it 
doesn’t generalizes well to make accurate predictions on new examples  

4. It doesn’t make accurate predictions for examples in the training set, and 
doesn’t generalizes well to make accurate predictions on new examples.
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Quiz (3/3)

■ Suppose your neural network obtains a train set error of 
0.5%, and a test set error of 7%.  

■ What should you try to improve the performance? 

1) Increase the number of units in each hidden layer 

2) Add regularization 

3) Use a deeper neural network  

4) Get more test data 

5) Get more training data
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What we have seen so far…

■ Bias-variance tradeoff 
❑ Over-fitting is the obstacle to generalization 

❑ Use a test set to detect over-fitting (or under-fitting) 

❑ Recipes to reduce bias and variance
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Over-fitting

■ How to reduce over-fitting ? 

❑ Option 1 ➜ Add more training data 
• This is always beneficial, but it could be expensive to get more data 

❑ Option 2 ➜ Simplify the model 
• Reduce the network parameters by using less units and layers 

• The risk is to increase the bias 

❑ Option 3 ➜ Apply regularization 
• Keep the complexity, but reduce the model’s degrees of freedom 
• This diminishes somewhat the capacity to fit the training data 

• A big variance reduction is traded for a small bias increase
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Norm penalization (1/3)

■ Norm penalization ➜ Small values for parameters θ1,…,θM 

❑ The cost function is modified as follows: 
 
 
 

❑ Now, the cost function is minimized for smaller values of θ1,…,θM  
 
 

❑ Small values for θ1,…,θM correspond to a simpler model 

❑ A simpler model is less prone to over-fitting and more to under-fitting
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Norm penalization (2/3)

■ The penalization gets rid of some network connections 
❑ The connections to be removed are identified during training

Without penalization
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Norm penalization (3/3)

■ The hyper-parameter 𝝺 controls the tradeoff of two goals 
❑ Fitting the train set 
❑ Keeping a simple model 

■ Warning ➜ The choice of 𝝺 is critical 

❑ If 𝞴 is very large, all the model parameters end up being close to zero 

❑ In this case, the model is under-fitting, as  
we get rid of all the network connections
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Early stopping (1/2)

■ Early stopping ➜ Halt when generalization stops improving 
❑ Training is halted when the performance on test set begins to degrade
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Early stopping (2/2)

■ The magnitude of θ1,…,θM increases during training 
❑ At the beginning ➜ θ1,…,θM are just initialized to small values 
❑ Toward the end   ➜ θ1,…,θM get bigger and bigger to fit the training data
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Dropout

■ Dropout ➜ Nodes are randomly removed during training 
❑ The output of random nodes is temporarily set to zero (for one iteration) 

❑ The dropout rate is the fraction of nodes that are zeroed out 

❑ Why it works? At test time, all the nodes are kept. This is equivalent to 
averaging the output of all the networks randomly created during training 
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Quiz

■ What happens when you increase the hyper-parameter 𝝺? 

1) Weights are pushed toward becoming smaller (closer to 0) 

2) Weights are pushed toward becoming bigger (further from 0) 

3) Doubling lambda should roughly result in doubling the weights 

4) Gradient descent taking bigger steps with each iteration 

■ What will likely happen when you increase the dropout rate? 
1) Increasing the regularization effect 

2) Reducing the regularization effect 

3) Causing the neural network to end up with a higher training set error 

4) Causing the neural network to end up with a lower training set error
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What we have seen so far…

■ Three types of regularization 
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Hyper-parameters (1/2)

■ Firstly, the hyper-parameters must be fixed… 
❑ L   ➜ Number of layers in the neural network 
❑ Ml  ➜ Number of units in each layer 
❑ g(l) ➜ Activation function for each layer 

❑ 𝞴   ➜ Regularization 

❑ 𝞪i  ➜ Step-size in gradient descent 

❑ Imax➜ Iterations in gradient descent 
❑ … (and many others) 

■ Then, the parameters can be learned via training 
❑ 𝞱 = W(1), W(2), …, W(L)

!27

Network 

Optimization



Giovanni Chierchia ESIEE Paris

Hyper-parameters (2/2)

■ How to find the best values for the hyper-parameters ? 
❑ Difficult to know in advance what are the best values 

❑ Unlike parameters, they can be hardly estimated through optimization 

❑ Instead, they are found by a trial and error process 

1) Fix a set of values 

2) Train the network (on the train set) 

3) Evaluate the performance (on the valid set) 

4) Repeat 1-3 for different values 

5) Select the best ones
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Cross-validation (1/2)

■ For the evaluation, the dataset is split in three chunks 
❑ Train set ➜ Used for training the model 
❑ Valid set ➜ Used for choosing the best hyper-parameters 
❑ Test set  ➜ Used for detecting over-fitting
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Cross-validation (2/2)

■ Training data can be shaken up for a better evaluation 
❑ Divide your data in K partitions of equal size 
❑ For each partition, use it as the valid set and the rest for training 
❑ Your final score is the average of the K scores obtained
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Hyper-parameter sampling (1/3)

■ How to select a set of values to explore ? 
❑ Uniform sampling ➜ Use a regular grid of points 

❑ Random sampling ➜ Choose points at random (in a given range)
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Hyper-parameter sampling (2/3)

■ Advice ➜ Use a coarse to fine sampling scheme
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Hyper-parameter sampling (3/3)

■ Advice ➜ Consider also a logarithmic scale for sampling 
❑ In some cases, the log scale is better than the linear one
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Quiz

■ Which of the following statements are true? 

1) If searching among a large number of hyper-parameters, you should try 
values in a grid rather than random values, so that you can carry out 
the search more systematically and not rely on chance. 

2) Every hyper-parameter, if set poorly, can have a huge negative impact 
on training, and so all of them are about equally important to tune well. 

3) Finding good hyper-parameter values is very time-consuming. So you 
should do it once at the start of the project, and try to find very good 
values, so that you don’t ever have to revisit tuning them again. 

4) If you think that the step-size (hyper-parameter for gradient descent) is 
between 10-3 (= 0.001) and 10-1 (= 0.1), the recommended way to 
sample its possible values consists of using a logarithmic scale. 

!34



Giovanni Chierchia ESIEE Paris

What we have seen so far…

■ Hyper-parameter search 
❑ Use a validation set to find the best hyper-parameters 
❑ Random sampling is superior to uniform grid search 
❑ Use a logarithmic scale when it is appropriate (e.g., for step-size)
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Stochastic gradient descent (1/4)

■ Standard gradient descent 
❑ The loss function contains a term for every single example (x(n),y(n)) 

❑ This can be a lot to compute for gradient descent,  
as it needs to go through all data at each iteration
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Stochastic gradient descent (2/4)

■ Stochastic gradient descent 
❑ At each iteration, select a block of training data 

❑ Then, compute the gradient w.r.t. the selected block 

❑ Important ➜ After a complete sweep, randomly shuffle the training set
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Stochastic gradient descent (3/4)

■ Stochastic gradient approximates the “true” gradient 
❑ Hence, it does not indicate the right descent direction 
❑ We compensate by taking many smaller steps (instead of few large ones)
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Stochastic gradient descent (4/4)

■ SGD needs to take many steps to ensure convergence 
❑ Advice 1 ➜ Decrease the step-size over time 

❑ Advice 2 ➜ The initial step-size 𝞪0 can be larger
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Saddle points and plateaus (1/3)

■ Neural network cost function is non-convex 
❑ Local minima dominate in shallow networks 
❑ Saddle points dominate in deep networks 
❑ Most local minima are close to the bottom (i.e., the global minimum) 
❑ Flat minima generalize better than sharp minima
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Saddle points and plateaus (2/3)

■ Gradient descent gets stuck in saddle points
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Saddle points and plateaus (3/3)

■ Gradient descent slows down on plateaus
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Normalized gradient descent (1/5)

■ Normalized gradient descent uses unit-length directions 
❑ The length travelled at each update is constant

!44

✓[i]

J(✓)

✓[i+1]

��✓[i+1] � ✓[i]
��2 = ↵i

The distance travelled at each step is exactly 
equal to the step-size. 
• Pros. The descent is only attracted by 

minima (local or global), not by saddle points. 
• Cons. To get infinitesimally close to the 

solution, the step-size must decay to zero.

✓[i+1] = ✓[i] � ↵i
rJ

�
✓[i]

�
��rJ

�
✓[i]

���

Step-size



Giovanni Chierchia ESIEE Paris

Normalized gradient descent (2/5)

■ Gradient descent ➜ Normalized vs Standard 
❑ Normalized GD performs fixed-length updates 
❑ Standard GD performs (decreasing) variable-length updates

!45



Giovanni Chierchia ESIEE Paris

Normalized gradient descent (3/5)

■ Normalized gradient descent goes through saddle points
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Normalized gradient descent (4/5)

■ Normalized gradient descent goes through plateaus
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Normalized gradient descent (5/5)

■ Normalized GD can only get so close to a minimum 
❑ The length of each step doesn’t decrease while approaching a minimum 
❑ Solution ➜ Use a decreasing step-size to get arbitrary close to a minimum

!48

Constant step-size

Decreasing step-size 
𝛂i = 𝛂0 / (i+1)0.5



Giovanni Chierchia ESIEE Paris

State-of-the-art: ADAM

■ Modern algorithms for neural network training 
❑ First-order optimization + Stochastic + Normalization + Momentum 

❑ Example ➜ ADAM (2015)
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Quiz

■ Assume you tracked the cost function J(𝝷) during training, 
and the plot versus the number of iterations looks like this. 

1) If you’re using stochastic gradient descent,  
something is wrong. But if you’re using  
gradient descent, this looks acceptable. 

2) Whether you’re using standard or stochastic  
gradient descent, this looks acceptable. 

3) If you’re using stochastic gradient descent,  
this looks acceptable. But if you’re using  
gradient descent, something is wrong. 

4) Whether you’re using standard or stochastic  
gradient descent, something is wrong.
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What we have seen so far…

■ Accelerated gradient descent 

■ Additional hyper-parameters 
❑ Mini-batch size 

❑ Optimization (Adagrad, RMSProp, ADAM, …) 

❑ Decaying schedule for step-size 

❑ …

!51

✓[i+1] = ✓[i] � ↵i rJ [i]
�
✓[i]

�

Adaptive step-size

Numerical  
optimization



Other best practices

Data preprocessing 
Batch normalization 
Ensemble of networks



Giovanni Chierchia ESIEE Paris

Data preprocessing (1/2)

■ Advice ➜ Normalize data at the network’s input 
1) Subtract the mean across every individual feature in the data 

2) Divide each feature by its standard deviation (after mean subtraction)
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Data preprocessing (2/2)

■ Input normalization can help training go faster 
❑ The cost function is “strongly” elliptical 
❑ Normalization makes the cost function “more circular” 
❑ This transformation speeds up the optimization process
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Batch normalization (1/2)

■ Normalization can be also applied to hidden layers 
❑ Training ➜ Parameters 𝞵(l) and 𝞼(l) are learned 

❑ Testing  ➜ Parameters 𝞵(l) and 𝞼(l) are kept fixed
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Batch normalization (2/2)

■ Layer normalization speeds up the training process 
❑ It also helps to avoid gradient explosions
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Ensemble of  networks

■ Advice ➜ Train several networks and combine their outputs 

1) Same model, different initialization.  
❑ Use cross-validation to determine the best hyper-parameters, then train several 

models with the same hyper-parameters, but with different random initialization. 

2) Top models discovered during cross-validation.  
❑ Use cross-validation to determine the best hyper-parameters, then pick the 

models having the best-performing sets of hyper-parameters. 

3) Different checkpoints of a single model.  
❑ If training is very expensive, take different checkpoints of a single network over 

time. For example, pick a network after a fixed number of epochs. Alternatively, 
start with a large step-size and a decaying schedule, train the network for a 
fixed time, and restart with a large step-size after saving the network. Another 
way is to maintain a running average of network parameters during training.
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The problem of  over-fitting

■ Bias-variance tradeoff 
❑ Over-fitting is the obstacle to generalization 

❑ Use a test set to detect over-fitting (or under-fitting) 

❑ Recipes to reduce bias and variance
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Under-fitting 
(high bias)

Over-fitting 
(high variance)

x1

x2

x1

x2

x1

x2

“Just right”
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Regularization

■ Effective ways to reduce overfitting
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x2
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Hyper-parameters

■ How to deal with hyper-parameters 
❑ Use a validation set to find the best hyper-parameters 
❑ Random sampling is superior to uniform grid search 
❑ Use a logarithmic scale when it is appropriate (e.g., for step-size)
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Dataset
2104 400
1600 330
2400 369
1416 232
3000 540
1985 300
1534 315
1427 199

Train set

Valid set

Test set

Set hyper-parameters

Evaluate Train
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Optimization

■ Accelerated gradient descent for neural net training 
❑ The choice of step-size is still critical to ensure fast convergence
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J(✓)J(✓)

✓[i+1] = ✓[i] � ↵irJ(✓[i])

Updated solution

Gradient in  
current solution

Step-size

Current solution


