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e XAl - Explainable Artificial Intelligence

e Domain that focuses on developing Al systems and models in a way that allows humans to understand,
interpret, and trust their decisions

e Provides insight into the inner workings of the algorithms and the reasons behind their outputs



Wolves vs. Huskies classification
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Diagnose pneumonia: high-risk vs. low-risk

NORMAL Asthma patients
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High-Risk Al Systems

The Al Act identifies certain Al systems as high-risk, such as those used in healthcare, transportation, and
law enforcement. High-risk Al systems are subject to stringent regulatory requirements, including
transparency and auditing

General Data Protection Regulation (GDPR)

European Union regulation which includes the "Right to Explanation" granting individuals the right to an
explanation of automated decision. In addition, organizations handling personal data must ensure that Al
systems comply with data protection principles, including data minimization and purpose limitation



Enhanced accountability and responsible Al development

Improved decision-making in critical applications

Increased user trust and acceptance of Al technologies

Compliance with legal and regulatory requirements

A more ethical and transparent approach to Al



XAl faces several challenges in bridging the gap between complex Al models and human understanding. Explaining deep
learning and complex models can be particularly challenging due to their opacity.

e Balancing model accuracy and interpretability is an ongoing challenge.

e Computation complexity, data size, and model dimensionality present hurdles in XAl.

e Ensuring fairness, avoiding bias, and maintaining accountability are ethical challenges in XAl

e Adherence to data protection and privacy regulations, like GDPR, requires transparent Al models

e Making XAl tools accessible and user-friendly is critical for practical adoption
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XAl should provide domain-specific explanations for various industries and applications

Healthcare

e In healthcare, XAl should explain medical diagnoses in a way that's meaningful to clinicians and patients.

Finance

e Infinance, interpretability is critical for risk assessments, and compliance with regulations like Basel Ill.

Autonomous Vehicles

e For autonomous vehicles, XAl should provide insights into driving decisions to ensure safety.
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Explainability

Making Al more accessible and accountable

v v

Transparency Interpretability
Providing access to the inner workings of the Making the outputs of Al systems comprehensible.
model, so that humans can see what happens providing explanations and insights into how and
inside the "black box." why a specific decision or prediction was made
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Models can be categorized as either "white-box" or "black-box."This classification relates to the transparency and
interpretability of the models.

White-box Models

High transparency and interpretability. They
are designed to be easily understood by humans.

Examples: Linear regression, decision trees, and
logistic regression are common examples of
white-box models

Black-box Models

Are complex and opaque, making it challenging to
understand how they arrive at their predictions. They
prioritize predictive performance over interpretability.

Examples: Deep neural networks, random forests, and
gradient-boosted trees are typical examples of
black-box models
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e Decision trees
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e Linear models: linear regression
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e Convolutional neural networks
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Fully-Connected Fully-Connected
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Do we need to stop using black-box models?
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The Trade-off

A trade-off exists between model transparency and predictive performance.
White-box models are more interpretable but may sacrifice predictive accuracy.
Black-box models often offer superior predictive power but may lack transparency.

The choice between white-box and black-box models depends on the specific task, domain, and the importance of
interpretability.
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How can we explain models?

Agnostic explanations

More general techniques that can be applied to
different already trained models.

Examples: features importance, example-based
explanations

\

Model-specific explanations

Techniques adapted to specific models that are
generally planned during architectural design phase.

Examples: attention mechanisms, generative models
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Feature importance
Example-based
Counterfactuals
Surrogate models
Concepts
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Refers to the assessment of the significance of input variables (features) in predicting the target variable.

Why Feature Importance?

e Understanding which features are influential helps us:
e Select the most relevant features for model building.
e Gain insights into the underlying data and problem domain.
e Identify potential factors driving predictions or decisions.
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Techniques for Assessing Feature Importance

e Various techniques are used to measure feature importance, including:

e Tree-Based Methods: Decision trees, random forests, and gradient boosting algorithms provide feature
importance scores based on the number of splits they make on each feature.

e Permutation Feature Importance: This method evaluates a model's performance when feature values are
randomly shuffled. Features with the most significant drops in performance are deemed more important.

e LASSO (L1 Regularization): LASSO regression assigns a coefficient to each feature. Features with non-zero
coefficients are considered important.

e Recursive Feature Elimination (RFE): RFE recursively removes the least important features and evaluates the
model's performance. The remaining features are considered important.
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Visualizing Feature Importance

e Feature importance scores can be visualized through:
e Bar plots, showing the importance of each feature.
e Heatmaps, displaying correlations between features and their importance.
e Decision tree or dendrogram plots, revealing the hierarchy of feature importance.
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Interpretation

e Feature importance doesn't always indicate causation but highlights associations.
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e It aids in focusing on relevant variables during analysis and decision-making. 26



Interpretation

e Feature importance doesn't always indicate causation but highlights associations.

e [t aidsinfocusing on relevant variables during analysis and decision-making. 27



e Gradient-based methods
e CAM methods
e SHAP
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Given an input image X, Guided Backpropagation:

e backpropagates the gradients from the output
(f (X)) to the input (X) resetting the negative
gradients in order to find most influential
features

e italso resets positions where the initial signal
(before ReLU) was negative, avoiding noise
due to unimportant features

Forward pass

Input image
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= gradients
0| <—————

Backward pass
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Considering a sample X € Rn composed by features xii =0, 1..., n and a neutral sample (baseline) X' € Rn composed by
features x'ii = 0, 1..., n, we want to compute the impact in the output (gradient) of changing from baseline X' to X

' SF(X 4+ a(X - X))

da

IG;(X) = (X,' — X’,') X f

a=0 OXj

At the end, each attribution is weighted according to the amount of variation from feature x'i to xi
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Gradients

Class: Reflex Camera

Score prediction: 0.99
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C | Tiger Cat

Input

Grad-CAM
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Proposed in order to combine the class awareness from Grad-CAM and the high-resolution (pixel attributions) from
Guided-Backpropagation

Heatmaps obtained by Grad-CAM
(overlaid on the original image)

Original image ‘ Css cat ‘ Class dog
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Input Image

Biased model
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Proposed in order to combine the class awareness from Grad-CAM and the high-resolution (pixel attributions) from

Guided-Backpropagation

s
LS e

Ly

Guided Grad-CAM

-

Grad-CAM

Guided Backpropagation

Rectified Conv
Feature Maps

FC Layer
Activations

<[ _[o]

Tiger Cat

38



What is SHAP?

e SHAP stands for "SHapley Additive exPlanations," an advanced technique in Explainable Artificial Intelligence (XAl).

e It provides comprehensive and model-agnostic explanations for Al model predictions, offering insights into the
contributions of individual features.

Motivation for SHAP

SHAP addresses the need for a unified, theoretically sound framework for explaining the output of any machine
learning model.

e [tisrooted in cooperative game theory, specifically Shapley values, to ensure fairness and consistency in
attributing feature importance.
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How SHAP Works
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Benefits of SHAP

e SHAP offers a unified, consistent, and theoretically grounded framework for feature attribution.
e It helps ensure fairness in model predictions by revealing the impact of different features transparently.

Limitations of SHAP

e The computational complexity of SHAP can be a challenge for large datasets and complex models.
e Interpretability of SHAP values may require domain expertise to fully understand their implications.
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These methods use examples to explain the general knowledge of the model

-Prototypes and criticism
-Deep dream
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Prototypes - Prototypes
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What Are Counterfactual Explanations?

e Counterfactual explanations provide an alternative input or set of inputs that, when applied to an Al model, would
have resulted in a different prediction.
e These explanations help users understand the factors that influenced the model's decision.

How Counterfactual Explanations Work

e Counterfactuals are generated by altering one or more input features while keeping other variables constant.
e The modified input is fed into the Al model, and the change in prediction is assessed.
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Challenges in Generating Counterfactuals

e Creating counterfactual explanations can be challenging due to the need to find feasible input changes that result
in a different prediction.
e The generation process may require optimization algorithms and domain knowledge.
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These are simpler models created to carry the same behavior of the original one.

They are approximations.

e LIME
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What is LIME?

e LIME stands for "Local Interpretable Model-Agnostic Explanations.”
e It's a popular and powerful technique in XAl that focuses on providing local explanations for individual Al model
predictions.

Local Interpretability

e LIME provides local interpretability by explaining why a specific prediction was made for a particular instance.
e It highlights which features played a crucial role in the model's decision for that specific case.
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We translate X (a sample we want to explain)
into interpretable components (superpixels for
images)

We generate perturbed samples X1, ..., Xm by
including or excluding these components

We train a linear regressor based on the original
model response for the analyzed class (f (X)), to
locally approximate the curve

Interpretable components:
Superpixels
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l Weighting by samples distance
Linear ‘o the original one

Regressor

Perturbed
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Original Image

Eletric Guitar Acoustic Guitar Labrador

Most important superpixels for the analyzed classes 53



Benefits of LIME

e LIME is a versatile tool that can be applied to a wide range of machine learning models, including deep neural
networks.
e It enhances transparency and accountability, making Al systems more interpretable and trustworthy.

Limitations of LIME
e LIME's local explanations might not always generalize well to the overall model behavior.

e The choice of the surrogate model and the method of generating perturbed examples can impact the quality of
explanations.
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Local Explanations

e Local explanations in XAl focus on explaining individual predictions or decisions made by an Al model.
e These explanations are specific to a single instance or data point and help understand why the model arrived at a

particular output for that case.

Techniques for Local Explanations

e Local explanation techniques aim to provide insights into the features or attributes that had the most influence on

a particular prediction.
e Common techniques include LIME (Local Interpretable Model-Agnostic Explanations) and SHAP (SHapley Additive

exPlanations), which build simplified models around specific instances to explain the model's behavior locally.
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Local explanations are valuable when we need to understand the reasoning behind a specific Al model's prediction,

especially in applications where outcomes can have significant consequences.
Examples include understanding why a medical Al system diagnosed a patient with a particular condition, or why a

credit scoring model rejected a loan application.

Label: A1 Confidence score (Top 3) Confidence score (Top 3) ~ Confidence score (Top 3) Label: A2 Confidence score (Top3)  Confidence score (Top 3)  Confidence score (Top 3)
[0.781] Normal [0.871] A1 [0.967] A1 [0.918] Normal [0.988] B2 [0.947) A2
[0.194] B2 [0.119] A2 [0.025] A2 [0.053] A1 [0.011] A2 [0.049] A1
[0.020] A2 [0.007) Normal [0.008] B2 [0.020] B2 [0.001] Normal [0.003] B2

(b)

|

-
Label: Normal Confidence score (Top3) Confidence score (Top 3) Confidence score (Top 3) Label: Normal Confidence score (Top 3) Confidence score (Top 3) Confidence score (Top 3)
[0.671] B1 [0.877] A1 [0.981] Normal [0.970] A1 [0.951] A1 [0.869] B1
[0.431] A1 [0.120] B2 [0.018] A2 [0.023] B2 [0.040] A2 [0.120] A1
[0.007] A2 [0.002] A2 [0.001) B1 [0.005) Normal [0.007) Normal [0.004] Normal
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Global Explanations

e Global explanations, on the other hand, aim to provide an overall understanding of an Al model's behavior across a
dataset or a larger context.

e These explanations help identify general trends, biases, and feature importance across all model predictions.

e They can reveal systemic issues or patterns that might not be evident when focusing on individual instances.

Techniques for Global Explanations

e Techniques for global explanations often involve methods like feature importance analysis, aggregating local
explanations, and creating global surrogate models.

e These methods provide insights into which features or attributes are most influential in the model's
decision-making across the entire dataset.
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e Semantics: the branch of linguistics and logic concerned with meaning.
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e Semantics: the branch of linguistics and logic concerned with meaning.

= Money.
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e Semiotics: the study of signs and symbols and their use or interpretation.
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e Semiotics: the study of signs and symbols and their use or interpretation.
All money?

5% = REPUBLICA FEDERATIVA DO BRASIL 5 '
R a5 B B —

&

B
f
E‘.
¥

P
o

KBUB2T98601

2 e -
Py A 2 8
L o0 P “s

g
_—

64

100

SRCE £CD DL EX0 EXP EKT E58 £XB 5O L8C ;



65



‘a‘

HUIl:. E=
fk@ém@

"o fi: R* -5 R™ hir : R™
B K™ class

m

Sc,k,l(%f«/’?; )
=V/l/./.-(fl(%‘f(((’?)) ' vé_;

66



CEO concept: most similar striped images el Women concept: most similar necktie images
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Key Takeaways:

e Local explanations focus on explaining individual model predictions and are valuable for specific use cases.

e Global explanations provide an overarching view of model behavior and are crucial for assessing fairness and
bias.

e Striking a balance between these two types of explanations is essential for a comprehensive XAl strategy.
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Explanations

Strengths

Trade-offs

Local

Precise insights for a
specific prediction

Understanding
individual model
behavior

May not capture global
patterns and trends

Lack the broader context
of model behavior

Global

Insights into feature
importance and overall
model behavior

Identify systemic
issues, biases, or
patterns in the model

Might not provide
insights into individual
predictions

Less precise for
explaining specific
instances

Agnostic

Techniques not tied to
a particular model
structure

Can be applied to
different types of
models

Can provide too
general explanations,
not adapted to the
problems

Model-specific

Techniques adapted to
specific contexts

Can provide deeper
explanations

Are tied to a
particular model
structure

In some cases, need to
be applied in the
beginning of
architectural design
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INPUT IMAGE

OUTPUT CLASSES

Labrador Retriever
Golden Retriever
Tennis Ball
Rhodesian Ridge...
Appenzeller

TOP CHANNELS SUPPORTING LABRADOR RETRIEVER

MIXED3B

MIXED4A

Showing 3 of 480

Showing 3 of 508

MIXED4B

MIXED4C

Showing 3 of 512

Showing 3 of 512

MIXED4D

Showing 3 of 528
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MODELS

Models

AlexNet AlexNet (Places) Inception vl Inception V1 (Places) -
A landmark in computer vision, this The same architecture as the Also known as GoogLeNet, this The same architecture as the

212 winner of ImageNet has over classic AlexNet model, but trained network set the state of the art in cl Inception vi model, but

is a collection of 50,000 citations. o0 the Places365 dat

visualizations of every
significant layer and
neuron of eightimportant
vision models.

The OpenAI Microscope

SIC

cation in 2014, trained on the Places365 dataset.

ImageNet cl.

VGG 19 Inception v3 Inception vé ResNet v2 50

Introduced in 2014, this network is Released in 2015, this iteration of ResNets use skip connections to
simpler than Inception variants, the I ption architectura enable stronger gradients in much
using only 3x3 convolutions and no impraved performance and deeper networks. This variant has
branches effick 50 layers.
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