Mathematical morphology: basic operators

G. Bertrand, J. Cousty, M. Couprie and L. Najman

Graph-based mathematical morphology
2022

ESIEE
 PARIS

Outline of the lecture

1 Operators: definitions and properties

2 Dilation and Erosion (by duality)

3 Algorithms

4 An open question?

Operator

- E is a set
- Let $X \subseteq E$, we denote by \bar{X}, the complementary set of X
- $\bar{X}=E \backslash X$
- We remark that $\overline{(\bar{X})}=X$

Operator

- E is a set
- Let $X \subseteq E$, we denote by \bar{X}, the complementary set of X
- $\bar{X}=E \backslash X$
- We remark that $\overline{(\bar{X})}=X$

Definition

- An operator (on E) is a map from $\mathcal{P}(E)$ to $\mathcal{P}(E)$
- In the following γ denotes an operator on E

Dual

Definition

- The dual of γ is the operator $\star \gamma$ defined by
- $\forall X \subseteq E, \star \gamma(X)=\overline{\gamma(\bar{X})}$

Dual

Definition

- The dual of γ is the operator $\star \gamma$ defined by
- $\forall X \subseteq E, \star \gamma(X)=\overline{\gamma(\bar{X})}$

Property

- $\star \star \gamma=\gamma$

Dual: Example \#1

- Let E be a metric space: E is endowed with a given distance d
- Let γ^{r} be the operator defined by
- $\forall X \in \mathcal{P}(E), \gamma^{r}(X)=\{x \in E \mid \exists y \in X, d(x, y) \leq r\}$

Dual: Example \#1

- Let E be a metric space: E is endowed with a given distance d
- Let γ^{r} be the operator defined by
- $\forall X \in \mathcal{P}(E), \gamma^{r}(X)=\{x \in E \mid \exists y \in X, d(x, y) \leq r\}$

Dual: Example \#1

■ Let E be a metric space: E is endowed with a given distance d

- Let γ^{r} be the operator defined by
- $\forall X \in \mathcal{P}(E), \gamma^{r}(X)=\{x \in E \mid \exists y \in X, d(x, y) \leq r\}$
- We see that $\star \gamma^{r}(X)=\{x \in E \mid \forall y \in \bar{X}, d(x, y)>r\}$

x

$\gamma^{r}(X)$

Dual: Example \#1

- Let E be a metric space: E is endowed with a given distance d
- Let γ^{r} be the operator defined by
- $\forall X \in \mathcal{P}(E), \gamma^{r}(X)=\{x \in E \mid \exists y \in X, d(x, y) \leq r\}$
- We see that $\star \gamma^{r}(X)=\{x \in E \mid \forall y \in \bar{X}, d(x, y)>r\}$

x

$\gamma^{r}(X)$

$\star \gamma^{r}(X)$

Dual: Example \#1

- Let E be a metric space: E is endowed with a given distance d
- Let γ^{r} be the operator defined by
- $\forall X \in \mathcal{P}(E), \gamma^{r}(X)=\{x \in E \mid \exists y \in X, d(x, y) \leq r\}$

■ We see that $\star \gamma^{r}(X)=\{x \in E \mid \forall y \in \bar{X}, d(x, y)>r\}$

- The set $\gamma^{r}(X)$ can be seen as a neighborhood of X (of size r) and $\star \gamma(X)$ as an interior of X

Dual: Exemple \#2 - convex hull

- Let E be the Euclidean plan $E=\mathbb{R}^{2}$
- A subset Y of E is convex if any line segment whose extremities are in Y is included in Y
- Let $X \subseteq E$ the convex hull of X is the set
- ch $(X)=\cap\{Y \mid Y$ is convex and $X \subseteq Y\}$

Dual: Exemple \#2 - convex hull

- Let E be the Euclidean plan $E=\mathbb{R}^{2}$
- A subset Y of E is convex if any line segment whose extremities are in Y is included in Y
■ Let $X \subseteq E$ the convex hull of X is the set
- ch $(X)=\cap\{Y \mid Y$ is convex and $X \subseteq Y\}$

Dual: Exemple \#2 - convex hull

- Let E be the Euclidean plan $E=\mathbb{R}^{2}$
- A subset Y of E is convex if any line segment whose extremities are in Y is included in Y
■ Let $X \subseteq E$ the convex hull of X is the set
- ch $(X)=\cap\{Y \mid \mathrm{Y}$ is convex and $X \subseteq Y\}$

Dual: Exemple \#2 - convex hull

- Let E be the Euclidean plan $E=\mathbb{R}^{2}$
- A subset Y of E is convex if any line segment whose extremities are in Y is included in Y

■ Let $X \subseteq E$ the convex hull of X is the set

- $\operatorname{ch}(X)=\cap\{Y \mid Y$ is convex and $X \subseteq Y\}$

Property

- Let $X \subseteq E$ be a bounded set, then $\star \operatorname{ch}(X)=\emptyset$.
- Is the converse also true?

NB: X is bounded $\Leftrightarrow \exists$ a disc of finite radius that contains X

Extensive operator

Definition

- An operator γ is extensive if
- $\forall X \subseteq E, X \subseteq \gamma(X)$
- An operator γ is anti-extensive if
- $\forall X \subseteq E, \gamma(X) \subseteq X$

Extensive operator

Definition

- An operator γ is extensive if
- $\forall X \subseteq E, X \subseteq \gamma(X)$
- An operator γ is anti-extensive if
- $\forall X \subseteq E, \gamma(X) \subseteq X$

Property

- An operator γ is extensive if and only if $\star \gamma$ is anti-extensive

Proof. γ is extensive $\Leftrightarrow \forall X \subseteq E, \bar{X} \subseteq \gamma(\bar{X})$
Thus, $\forall X \subseteq E, X \supseteq \overline{\gamma(\bar{X})}$, which means that $\star \gamma$ is anti-extensive.

Increasing and idempotent operators

Definition

- An operator γ is increasing if
- $\forall X, Y \in \mathcal{P}(E), X \subseteq Y \quad \Longrightarrow \gamma(X) \subseteq \gamma(Y)$
- An operator γ is idempotent if
- $\forall X \in \mathcal{P}(E), \gamma(\gamma(X))=\gamma(X)$

Increasing and idempotent operators

Definition

- An operator γ is increasing if
- $\forall X, Y \in \mathcal{P}(E), X \subseteq Y \quad \Longrightarrow \quad \gamma(X) \subseteq \gamma(Y)$
- An operator γ is idempotent if
- $\forall X \in \mathcal{P}(E), \gamma(\gamma(X))=\gamma(X)$

Property

- γ is increasing $\Leftrightarrow \star \gamma$ is increasing

■ γ is idempotent $\Leftrightarrow \star \gamma$ is idempotent

Example. Are the operators of previous examples extensive, increasing and idempotent?

Algebraic dilation and erosion

Definition

- Let δ and ϵ be two operators
$\square \delta$ is an (algebraic) dilation whenever it commutes under union:
■ $\forall X, Y \in \mathcal{P}(E), \delta(X) \cup \delta(Y)=\delta(X \cup Y)$
$■ \epsilon$ is an algebraic erosion whenever it commutes under intersection:
- $\forall X, Y \in \mathcal{P}(E), \epsilon(X) \cap \epsilon(Y)=\epsilon(X \cap Y)$

Algebraic dilation and erosion

Definition

- Let δ and ϵ be two operators
$\square \delta$ is an (algebraic) dilation whenever it commutes under union:
- $\forall X, Y \in \mathcal{P}(E), \delta(X) \cup \delta(Y)=\delta(X \cup Y)$
$■ \epsilon$ is an algebraic erosion whenever it commutes under intersection:
- $\forall X, Y \in \mathcal{P}(E), \epsilon(X) \cap \epsilon(Y)=\epsilon(X \cap Y)$

Property

- δ is a dilation if and only if $\star \delta$ is an erosion
- δ and ϵ are increasing

Example

■ The neighborhood operator γ^{r} of size r is a dilation

Example

- The neighborhood operator γ^{r} of size r is a dilation
- Thus, the interior operator $\star \gamma^{r}$ is an erosion

Example

- The neighborhood operator γ^{r} of size r is a dilation
- Thus, the interior operator $\star \gamma^{r}$ is an erosion

Exercice.

1 Verify the dilation property of γ^{r} and the erosion property of $\star \gamma^{r}$ on the following example

Example

- The neighborhood operator γ^{r} of size r is a dilation
- Thus, the interior operator $\star \gamma^{r}$ is an erosion
- The convex hull operator ch is not a dilation

Exercice.

1 Verify the dilation property of γ^{r} and the erosion property of $\star \gamma^{r}$ on the following example

Example

- The neighborhood operator γ^{r} of size r is a dilation
- Thus, the interior operator $\star \gamma^{r}$ is an erosion
- The convex hull operator ch is not a dilation

Exercice.

1 Verify the dilation property of γ^{r} and the erosion property of $\star \gamma^{r}$ on the following example
2 Give a counter-example

Example

- The neighborhood operator γ^{r} of size r is a dilation
- Thus, the interior operator $\star \gamma^{r}$ is an erosion
- The convex hull operator ch is not a dilation

■ Thus, the operator \star ch is not an erosion

Exercice.

1 Verify the dilation property of γ^{r} and the erosion property of $\star \gamma^{r}$ on the following example
2 Give a counter-example

Discrete morphology

Problem

- How can we define an operator that can handle geometric data (such as images for instance) stored in a computer memory?
- How can we efficiently implement such operators?

Morphological dilation

Definition

- Let 「 be a map from E in $\mathcal{P}(E)$
- (E, Γ) is a graph

Morphological dilation

Definition

- Let 「 be a map from E in $\mathcal{P}(E)$
- (E, Γ) is a graph
- The (morphological) dilatation δ_{Γ} by Γ is the operator that maps any $X \in \mathcal{P}(E)$ to the set
- $\delta_{\Gamma}(X)=X \oplus \Gamma=\cup\{\Gamma(x) \mid x \in X\}$

Morphological dilation

Definition

- Let Γ be a map from E in $\mathcal{P}(E)$
- (E, Γ) is a graph
- The (morphological) dilatation δ_{Γ} by Γ is the operator that maps any $X \in \mathcal{P}(E)$ to the set
- $\delta_{\Gamma}(X)=X \oplus \Gamma=\cup\{\Gamma(x) \mid x \in X\}$
- In a morphological context, the map Γ is also called a structuring element

Morphological dilation

Definition

- Let 「 be a map from E in $\mathcal{P}(E)$
- (E, Γ) is a graph
- The (morphological) dilatation δ_{Γ} by Γ is the operator that maps any $X \in \mathcal{P}(E)$ to the set
- $\delta_{\Gamma}(X)=X \oplus \Gamma=\cup\{\Gamma(x) \mid x \in X\}$
- In a morphological context, the map Γ is also called a structuring element

Remark. Any morphological dilation is an algebraic dilation
Straightforward property.
δ_{Γ} is extensive if and only if (E, Γ) is reflexive
Thus, $\star \delta_{\Gamma}$ is anti-extensive if and only if Γ is reflexive

Example in an arbitrary graph

- $\delta_{\Gamma}(X)=?$

Example in an arbitrary graph

$X=\{a, b, c, d, g, k\} \quad \delta_{\Gamma}(X)=X \cup\{e, l, m\}$

■ $\delta_{\Gamma}(X)=?$

Example in an arbitrary graph

$X=\{a, b, c, d, g, k\} \quad \delta_{\Gamma}(X)=X \cup\{e, l, m\}$

- $\delta_{\Gamma}(X)=?$
$\square \star \delta_{\Gamma}(X)=$?

Example in an arbitrary graph

$X=\{a, b, c, d, g, k\} \quad \delta_{\Gamma}(X)=X \cup\{e, I, m\} \quad \star \delta_{\Gamma}(X)=X \backslash\{k, a\}$

- $\delta_{\Gamma}(X)=?$
$\square \star \delta_{\Gamma}(X)=$?

Mesh: example

Mesh: example

Translation invariant structuring element

■ Let E be a subset of a space endowed with a translation \mathcal{T}

Translation invariant structuring element

■ Let E be a subset of a space endowed with a translation \mathcal{T}

- Let $x \in E$ and $\overrightarrow{y z} \in E \times E$, we denote by $\mathcal{T}_{\overrightarrow{y z}}(x)$ the translation of x by the vector $\overrightarrow{y z}$
- Let $X \in \mathcal{P}(E)$, the translation of X by $\overrightarrow{y z}$ is the set:
- $\mathcal{T}_{\vec{y} \mathbf{z}}(X)=\left\{\mathcal{T}_{\vec{y} \vec{z}}(x) \mid x \in X\right\}$

Translation invariant structuring element

- Let E be a subset of a space endowed with a translation \mathcal{T}

■ Let $x \in E$ and $\overrightarrow{y z} \in E \times E$, we denote by $\mathcal{T}_{\overrightarrow{y z}}(x)$ the translation of x by the vector $\overrightarrow{y z}$

- Let $X \in \mathcal{P}(E)$, the translation of X by $\overrightarrow{y z}$ is the set:
- $\mathcal{T}_{\vec{y} \mathbf{z}}(X)=\left\{\mathcal{T}_{\vec{y} \vec{z}}(x) \mid x \in X\right\}$

■ A structuring element Γ on E is translation invariant if

- $\forall x, y \in E, \Gamma(y)=\mathcal{T}_{\overrightarrow{x y}}(\Gamma(x))$

Translation invariant structuring element

\square Let E be a subset of a space endowed with a translation \mathcal{T}

- Let $x \in E$ and $\overrightarrow{y z} \in E \times E$, we denote by $\mathcal{T}_{\overrightarrow{y z}}(x)$ the translation of x by the vector $\overrightarrow{y z}$
- Let $X \in \mathcal{P}(E)$, the translation of X by $\overrightarrow{y z}$ is the set:
- $\mathcal{T}_{\vec{y} \mathbf{z}}(X)=\left\{\mathcal{T}_{\vec{y} \vec{z}}(x) \mid x \in X\right\}$
- A structuring element Γ on E is translation invariant if
- $\forall x, y \in E, \Gamma(y)=\mathcal{T}_{\overrightarrow{x y}}(\Gamma(x))$

Remark.

1 In order to define a translation invariant structuring element, defining $\Gamma(x)$ at a unique point $x \in E$ is sufficient
2 If Γ is translation invariant, then $\forall X \in \mathcal{P}(E), \forall \vec{v} \in E \times E$, $\delta_{\Gamma}\left(\mathcal{T}_{\vec{v}}(X)\right)=\mathcal{T}_{\vec{v}}\left(\delta_{\Gamma}(X)\right)$

Example: square grid

- Let $E=\mathbb{Z}^{2}$ and Γ be defined by $\forall x=(i, j) \in \mathbb{Z}^{2}$,

$$
\Gamma(x)=\{(i, j),(i+1, j),(i+1, j-1),(i, j-1),(i-1, j-1)\}
$$

Questions.

1. Use the representation above to draw the structuring elements Γ^{-1} and Γ_{s} (symmetric closure of Γ).
2. Draw $\delta_{\Gamma}(X), \delta_{\Gamma-1}(X), \delta_{\Gamma_{s}}(X), \star \delta_{\Gamma}(X), \star \delta_{\Gamma-1}(X)$, and $\star \delta_{\Gamma_{s}}(X)$.

Example: square grid

- Let $E=\mathbb{Z}^{2}$ and Γ be defined by $\forall x=(i, j) \in \mathbb{Z}^{2}$,

$$
\Gamma(x)=\{(i, j),(i+1, j),(i+1, j-1),(i, j-1),(i-1, j-1)\}
$$

Questions.

1. Use the representation above to draw the structuring elements Γ^{-1} and Γ_{s} (symmetric closure of Γ).
2. Draw $\delta_{\Gamma}(X), \delta_{\Gamma-1}(X), \delta_{\Gamma_{s}}(X), \star \delta_{\Gamma}(X), \star \delta_{\Gamma-1}(X)$, and $\star \delta_{\Gamma_{s}}(X)$.

Example: square grid

- Let $E=\mathbb{Z}^{2}$ and Γ be defined by $\forall x=(i, j) \in \mathbb{Z}^{2}$,

$$
\Gamma(x)=\{(i, j),(i+1, j),(i+1, j-1),(i, j-1),(i-1, j-1)\}
$$

Questions.

1. Use the representation above to draw the structuring elements Γ^{-1} and Γ_{s} (symmetric closure of Γ).
2. Draw $\delta_{\Gamma}(X), \delta_{\Gamma-1}(X), \delta_{\Gamma_{s}}(X), \star \delta_{\Gamma}(X), \star \delta_{\Gamma-1}(X)$, and $\star \delta_{\Gamma_{s}}(X)$.

Example: square grid

- Let $E=\mathbb{Z}^{2}$ and Γ be defined by $\forall x=(i, j) \in \mathbb{Z}^{2}$,

$$
\Gamma(x)=\{(i, j),(i+1, j),(i+1, j-1),(i, j-1),(i-1, j-1)\}
$$

Questions.

1. Use the representation above to draw the structuring elements Γ^{-1} and Γ_{s} (symmetric closure of Γ).
2. Draw $\delta_{\Gamma}(X), \delta_{\Gamma-1}(X), \delta_{\Gamma_{s}}(X), \star \delta_{\Gamma}(X), \star \delta_{\Gamma-1}(X)$, and $\star \delta_{\Gamma_{s}}(X)$.

Example: square grid

- Let $E=\mathbb{Z}^{2}$ and Γ be defined by $\forall x=(i, j) \in \mathbb{Z}^{2}$,

$$
\Gamma(x)=\{(i, j),(i+1, j),(i+1, j-1),(i, j-1),(i-1, j-1)\}
$$

Questions.

1. Use the representation above to draw the structuring elements Γ^{-1} and Γ_{s} (symmetric closure of Γ).
2. Draw $\delta_{\Gamma}(X), \delta_{\Gamma-1}(X), \delta_{\Gamma_{s}}(X), \star \delta_{\Gamma}(X), \star \delta_{\Gamma-1}(X)$, and $\star \delta_{\Gamma_{s}}(X)$.

Example: square grid

- Let $E=\mathbb{Z}^{2}$ and Γ be defined by $\forall x=(i, j) \in \mathbb{Z}^{2}$,

$$
\Gamma(x)=\{(i, j),(i+1, j),(i+1, j-1),(i, j-1),(i-1, j-1)\}
$$

Questions.

1. Use the representation above to draw the structuring elements Γ^{-1} and Γ_{s} (symmetric closure of Γ).
2. Draw $\delta_{\Gamma}(X), \delta_{\Gamma-1}(X), \delta_{\Gamma_{s}}(X), \star \delta_{\Gamma}(X), \star \delta_{\Gamma-1}(X)$, and $\star \delta_{\Gamma_{s}}(X)$.

2D imagery: example

,

3D imagery: example

Morphological dilation and erosion: characterizations

Property

- Let Γ be a structuring element and let $X \subseteq E$

$$
1 \delta_{\Gamma}(X)=\left\{x \in E \mid \Gamma^{-1}(x) \cap X \neq \emptyset\right\}
$$

Morphological dilation and erosion: characterizations

Property

- Let Γ be a structuring element and let $X \subseteq E$

$$
1 \delta_{\Gamma}(X)=\left\{x \in E \mid \Gamma^{-1}(x) \cap X \neq \emptyset\right\}
$$

Proof.

$1 \delta_{\Gamma}(X)=\cup\{\Gamma(x) \mid x \in E\}=\{y \in \mid \exists x \in X, y \in \Gamma(x)\}$ $=\left\{y \in \mid \exists x \in X, x \in \Gamma^{-1}(y)\right\}=\left\{y \in E \mid \Gamma^{-1}(y) \cap X \neq \emptyset\right\}$

Morphological dilation and erosion: characterizations

Property

- Let Γ be a structuring element and let $X \subseteq E$
$1 \delta_{\Gamma}(X)=\left\{x \in E \mid \Gamma^{-1}(x) \cap X \neq \emptyset\right\}$
$2 \star \delta_{\Gamma}(X)=\left\{x \in E \mid \Gamma^{-1}(x) \subseteq X\right\}$

Proof.

$1 \delta_{\Gamma}(X)=\cup\{\Gamma(x) \mid x \in E\}=\{y \in \mid \exists x \in X, y \in \Gamma(x)\}$

$$
=\left\{y \in \mid \exists x \in X, x \in \Gamma^{-1}(y)\right\}=\left\{y \in E \mid \Gamma^{-1}(y) \cap X \neq \emptyset\right\}
$$

Morphological dilation and erosion: characterizations

Property

- Let Γ be a structuring element and let $X \subseteq E$
$1 \delta_{\Gamma}(X)=\left\{x \in E \mid \Gamma^{-1}(x) \cap X \neq \emptyset\right\}$
$2 \star \delta_{\Gamma}(X)=\left\{x \in E \mid \Gamma^{-1}(x) \subseteq X\right\}$

Proof.

$$
\begin{aligned}
& 1 \delta_{\Gamma}(X)=\cup\{\Gamma(x) \mid x \in E\}=\{y \in \mid \exists x \in X, y \in \Gamma(x)\} \\
& \quad=\left\{y \in \mid \exists x \in X, x \in \Gamma^{-1}(y)\right\}=\left\{y \in E \mid \Gamma^{-1}(y) \cap X \neq \emptyset\right\}
\end{aligned}
$$

$2 \star \delta_{\Gamma}(X)=\overline{\delta(\bar{X})}$. Thus, by 1 , we deduce :

$$
\begin{aligned}
& \star \delta_{\Gamma}(X)=\left\{x \in E \mid \Gamma^{-1}(x) \cap \bar{X} \neq \emptyset\right\} \\
& \star \delta_{\Gamma}(X)=\left\{x \in E \mid \Gamma^{-1}(x) \cap \bar{X}=\emptyset\right\} \\
& \left.\star x \in E \mid \Gamma^{-1}(x) \subseteq X\right\}
\end{aligned}
$$

Influence of the structuring element

Question. Erode the set X represented in black by the structuring element Γ, that is to say draw $\star \delta_{\Gamma}(X)$

Influence of the structuring element

Question. Erode the set X represented in black by the structuring element Γ, that is to say draw $\star \delta_{\Gamma}(X)$

Influence of the structuring element

Question. Erode the set X represented in black by the structuring element Γ, that is to say draw $\star \delta_{\Gamma}(X)$

Structuring elements

- The result of a dilatation/erosion highly depends on the structuring elements that can be
- of various shapes
- of various sizes
- isotropic or not
- symmetric or not
- reflexive or not

■ convex or not

- translation invariant or not

Computing a morphological dilation

Algorithm DIL (Data: $(E, \Gamma), X \subseteq E ;$ Result: $Y=\delta_{\Gamma}(X)$)

- $Y:=\emptyset$;
- For each $x \in X$ do
- For each $y \in \Gamma(x)$ do $Y:=Y \cup\{y\} ;$

Computing a morphological dilation

Algorithm DIL (Data: $(E, \Gamma), X \subseteq E ;$ Result: $Y=\delta_{\Gamma}(X)$)

- $Y:=\emptyset$;
- For each $x \in X$ do
- For each $y \in \Gamma(x)$ do $Y:=Y \cup\{y\} ;$

Complexity

- Algorithm DIL can be implemented to run in $O(n+m)$ time, where $n=|E|$ and $m=|\bar{\Gamma}|$
- Which data structure for $(E, \Gamma), X$ and Y ?

Union of structuring elements

Property

- Let Γ_{1}, Γ_{2} and Γ_{3} be three structuring elements such
that $\overrightarrow{\Gamma_{3}}=\overrightarrow{\Gamma_{1}} \cup \overrightarrow{\Gamma_{2}}$
- $\forall X \in \mathcal{P}(E)$,
$1 \delta_{\Gamma_{3}}(X)=\delta_{\Gamma_{1}}(X) \cup \delta_{\Gamma_{2}}(X)$
$2 \star \delta_{\Gamma_{3}}(X)=\star \delta_{\Gamma_{1}}(X) \cap \star \delta_{\Gamma_{2}}(X)$

Union of structuring elements

Property

- Let Γ_{1}, Γ_{2} and Γ_{3} be three structuring elements such that $\overrightarrow{\Gamma_{3}}=\overrightarrow{\Gamma_{1}} \cup \overrightarrow{\Gamma_{2}}$
- $\forall X \in \mathcal{P}(E)$,
$1 \delta_{\Gamma_{3}}(X)=\delta_{\Gamma_{1}}(X) \cup \delta_{\Gamma_{2}}(X)$
$2 \star \delta_{\Gamma_{3}}(X)=\star \delta_{\Gamma_{1}}(X) \cap \star \delta_{\Gamma_{2}}(X)$

Proof.

$1 \delta_{\Gamma_{3}}(X)=\cup\left\{\Gamma_{3}(x) \mid x \in X\right\}$ Thus, by union of graphs,
$\delta_{\Gamma_{3}}(X)=\cup\left\{\Gamma_{1}(x) \cup \Gamma_{2}(x) \mid x \in X\right\}$
$=\left[\cup\left\{\Gamma_{1}(x) \mid x \in X\right\}\right] \cup\left[\cup\left\{\Gamma_{2}(x) \mid x \in X\right\}\right]=\delta_{\Gamma_{1}}(X) \cup \delta_{\Gamma_{2}}(X)$
2 By duality, $\star \delta_{\Gamma_{3}}(X)=\overline{\delta_{\Gamma_{3}}(\bar{X})}$. Thus, from relation 1 ., $\star \delta_{\Gamma_{3}}(X)=\overline{\left.\delta_{\Gamma_{1}}(\bar{X}) \cup \delta_{\Gamma_{2}}(\bar{X})\right\}}=\overline{\delta_{\Gamma_{1}}(\bar{X})} \cap \overline{\left.\delta_{\Gamma_{2}}(\bar{X})\right\}}$. Hence, by duality, $\star \delta_{\Gamma_{3}}(X)=\star \delta_{\Gamma_{1}}(X) \cap \star \delta_{\Gamma_{2}}(X)$

Dilations of structuring elements

Definition

- Let Γ_{1} and Γ_{2} be two structuring elements
- We denote by $\Gamma_{1} \oplus \Gamma_{2}$ the structuring element such that
- $\forall x \in E, \Gamma_{1} \oplus \Gamma_{2}(x)=\delta_{\Gamma_{2}}\left(\Gamma_{1}(x)\right)$

Composition of dilations by structuring elements

Property

- Let Γ_{1} and Γ_{2} be two structuring elements
$1 \forall X \in \mathcal{P}(E), \delta_{\Gamma_{1} \oplus \Gamma_{2}}(X)=\delta_{\Gamma_{2}}\left(\delta_{\Gamma_{1}}(X)\right)$
$2 \forall X \in \mathcal{P}(E), \star \delta \delta_{\Gamma_{1} \oplus \Gamma_{2}}(X)=\star \delta_{\Gamma_{2}}\left(\star \delta_{\Gamma_{1}}(X)\right)$

Proof.

$1 \delta_{\Gamma_{1} \oplus \Gamma_{2}}(X)=\cup\left\{\Gamma_{1} \oplus \Gamma_{2}(x) \mid x \in X\right\}=\cup\left\{\delta_{\Gamma_{2}}\left(\Gamma_{1}(x)\right) \mid x \in X\right\}$.
Since $\delta_{\Gamma_{2}}$ is an algebraic dilation, $\delta_{\Gamma_{2}}$ commutes under union.
Hence, $\left.\delta_{\Gamma_{1} \oplus \Gamma_{2}}(X)=\delta_{\Gamma_{2}}\left(\cup\left\{\Gamma_{1}(x) \mid x \in X\right\}\right)=\delta_{\Gamma_{2}}\left(\delta_{\Gamma_{1}}\right)(X)\right)$
2 The second relation follows from the first one by duality.

Decomposition of structuring elements

■ The previous property shows that a dilation by a "large" structuring element can sometimes be replaced by a composition of dilations by simpler structuring elements
■ This can lead to a significant efficiency improvement of some dilation algorithms

Decomposition of structuring elements

■ The previous property shows that a dilation by a "large" structuring element can sometimes be replaced by a composition of dilations by simpler structuring elements

- This can lead to a significant efficiency improvement of some dilation algorithms

Decomposition of structuring elements

- The previous property shows that a dilation by a "large" structuring element can sometimes be replaced by a composition of dilations by simpler structuring elements
- This can lead to a significant efficiency improvement of some dilation algorithms

But $\Gamma_{4}=\bullet \cdot$ cannot be decomposed

Iterated operators

Definition

- Let γ be an operator and let $i \in \mathbb{N}$
- γ^{i} is the operator defined by

$$
\begin{aligned}
& 1 \gamma^{i}=\gamma \gamma^{i-1} \\
& \left.2 \gamma^{0}=I d \quad \text { (i.e. } \forall X \subseteq E, \gamma^{0}(X)=X\right)
\end{aligned}
$$

Iterated operators

Definition

- Let γ be an operator and let $i \in \mathbb{N}$
- γ^{i} is the operator defined by

$$
\begin{aligned}
& 1 \gamma^{i}=\gamma \gamma^{i-1} \\
& \left.\mathbf{2} \gamma^{0}=I d \text { (i.e. } \forall X \subseteq E, \gamma^{0}(X)=X\right)
\end{aligned}
$$

Property

$\square \star\left[\gamma^{i}\right]=[\star \gamma]^{i}$

- Let Γ be a structuring element, $\left[\delta_{\Gamma}\right]^{i}=\delta_{\Gamma \oplus \ldots \oplus \Gamma}$

Exercise

- Let $E=\mathbb{Z}^{2}$ and let Γ_{4} be defined by $\forall x=(i, j) \in E, \Gamma_{4}(x)=$ $\{(i, j),(i-1, j),(i, j-1),(i+1, j),(i, j+1)\}$
■ How many elements belong to $\Gamma_{4} \oplus \Gamma_{4} \oplus \Gamma_{4}(x)$, for any $x \in E$?
- Compare approximately the number of operations required to compute $\delta_{\Gamma_{4} \oplus \Gamma_{4} \oplus \Gamma_{4}}$ and $\left[\delta_{\Gamma_{4}}\right]^{3}$ by using algorithm DIL
- Indication: you can consider that DIL uses $n+m$ operations to perform a dilation by a structuring element Γ_{4} (with $n=|E|$ and $m=\left|\overrightarrow{\Gamma_{4}}\right|$)

Exercise

■ Let $X \subseteq \mathbb{Z}^{2}$ be the black object drawn below

- Which operator (or composition of operators) can you use to suppress the horizontal wire while preserving the vertical ones?
- Which operator (or composition of operators) allows the "hole" of X to be filled in while minimizing the difference between the result and X ?

Exercise

- Let $E=\mathbb{Z}^{2}$, let $X \subseteq E$, and let $\overrightarrow{x y} \in E \times E$ be any vector of \mathbb{Z}^{2}, with $x=\left(i_{x}, j_{x}\right)$ and $y=\left(i_{y}, j_{y}\right)$
- The morphological machine can only perform the following operations
- dilation by a structuring element
- complementation
- Is it possible to compute the translation of X by $\overrightarrow{x y}$ with the morphological machine?
- Same question for a restricted morphological machine for which the structuring elements must be included in Γ_{4}

Adjunction

Problem

- Is there an inverse operator δ^{\prime} for any dilation δ ?
- In other words, can we find δ^{\prime} such that $\forall X \in \mathcal{P}(E), \delta^{\prime}(\delta(X))=X$?

Solution

- Come to next lecture about mathematical morphology!

List of main notions

■ Increasing, extensive, anti-extensive idempotent operators

- Dual operators
- Algebraic dilation/erosion
- Morphological dilation/erosion (by a structuring element)

