Introduction to grayscale image processing by mathematical morphology

G. Bertrand, J. Cousty, M. Couprie and L. Najman

MorphoGraph 2022

Founding Member
)(Université

Outline of the lecture

1 Grayscale images

2 Operators on grayscale images

Images

Definition

- Let \mathbb{V} be a set of values
- An image (on E with values in \mathbb{V}) is a map I from E into \mathbb{V}
- $I(x)$ is called the value of the point (pixel) \times for I

Images

Definition

- Let \mathbb{V} be a set of values

■ An image (on E with values in \mathbb{V}) is a map I from E into \mathbb{V}

- I(x) is called the value of the point (pixel) \times for I

Example

■ Images with values in \mathbb{R}^{+}: euclidean distance map D_{X} to a set $X \in \mathcal{P}(E)$
■ Images with values in \mathbb{Z}^{+}: distance map D_{X} for a geodesic distance in a uniform network

Grayscale images

■ We denote by \mathcal{I} the set of all images with integers values on E

- An image in \mathcal{I} is also called grayscale (or graylevel) image

Grayscale images

■ We denote by \mathcal{I} the set of all images with integers values on E

- An image in \mathcal{I} is also called grayscale (or graylevel) image
- We denote by I an arbitrary image in \mathcal{I}
- The value $I(x)$ of a point $x \in E$ is also called the gray level of x, or the gray intensity at x

Topographical interpretation

- An grayscale image I can be seen as a topographical relief - $I(x)$ is called the altitude of x

Topographical interpretation

- An grayscale image I can be seen as a topographical relief
- $I(x)$ is called the altitude of x
- Bright regions: mountains, crests, hills
- Dark regions: bassins, valleys

Level set

Definition

- Let $k \in \mathbb{Z}$

■ The k-level set (or k-section, or k-threshold) of I, denoted by I_{k}, is the subset of E defined by:

- $I_{k}=\{x \in E \mid I(x) \geq k\}$

Level set

Definition

- Let $k \in \mathbb{Z}$
- The k-level set (or k-section, or k-threshold) of I, denoted by I_{k}, is the subset of E defined by:
- $I_{k}=\{x \in E \mid I(x) \geq k\}$

I

180

I_{150}

Reconstruction

Property

$\square \forall k, k^{\prime} \in \mathbb{Z}, k^{\prime}>k \Longrightarrow I_{k^{\prime}} \subseteq I_{k}$
■ $I(x)=\max \left\{k \in \mathbb{Z} \mid x \in I_{k}\right\}$

grayscale operators

- An operator (on \mathcal{I}) is a map from \mathcal{I} into \mathcal{I}

grayscale operators

- An operator (on \mathcal{I}) is a map from \mathcal{I} into \mathcal{I}

Definition (flat operators)

- Let γ be an increasing operator on E
- The stack operator induced by γ is the operator on \mathcal{I}, also denoted by γ, defined by:
- $\forall I \in \mathcal{I}, \forall k \in \mathbb{Z},[\gamma(I)]_{k}=\gamma\left(I_{k}\right)$

grayscale operators

- An operator (on \mathcal{I}) is a map from \mathcal{I} into \mathcal{I}

Definition (flat operators)

- Let γ be an increasing operator on E
- The stack operator induced by γ is the operator on \mathcal{I}, also denoted by γ, defined by:
- $\forall I \in \mathcal{I}, \forall k \in \mathbb{Z},[\gamma(I)]_{k}=\gamma\left(I_{k}\right)$

Exercice. Show that a same construction cannot be used to derive an operator on \mathcal{I} from an operator on E that is not increasing.

Characterisation of grayscale operators

Property

- Let γ be an increasing operator on E
- $[\gamma(I)](x)=\max \left\{k \in \mathbb{Z} \mid x \in \gamma\left(I_{k}\right)\right\}$

Characterisation of grayscale operators

Property

- Let γ be an increasing operator on E
- $[\gamma(I)](x)=\max \left\{k \in \mathbb{Z} \mid x \in \gamma\left(I_{k}\right)\right\}$

Remark. Untill now, all operators seen in the MorphoGraph and Imagery course are increasing

Illustration: dilation on \mathcal{I} by Γ

Illustration: erosion on \mathcal{I} by Γ

Illustration: opening on \mathcal{I} by Γ

Illustration: closing on \mathcal{I} by Γ

Dilation/Erosion by a structuring element: characterisation

Property (duality)

- Let Γ be a structuring element
- $\epsilon_{\Gamma}(I)=-\delta_{\Gamma-1}(-I)$

Dilation/Erosion by a structuring element: characterisation

Property (duality)

- Let Γ be a structuring element
- $\epsilon_{\Gamma}(I)=-\delta_{\Gamma-1}(-I)$

Property

- Let Γ be a structuring element
- $\left[\delta_{\Gamma}(I)\right](x)=\max \left\{I(y) \mid y \in \Gamma^{-1}(x)\right\}$
- $\left[\epsilon_{\Gamma}(I)\right](x)=\min \{I(y) \mid y \in \Gamma(x)\}$

Exercise

- Write an algorithm whose data are a graph (E, Γ) and a grayscale image I on E and whose result is the image $I^{\prime}=\delta_{\Gamma}\left(I^{\prime}\right)$

