Introduction to grayscale image processing by mathematical morphology

G. Bertrand, J. Cousty, M. Couprie and L. Najman

MorphoGraph

2022

1 Grayscale images

2 Operators on grayscale images

BCMN : Morpho, graphes et imagerie 3D

Images

Definition

- Let \mathbb{V} be a set of values
- An image (on E with values in \mathbb{V}) is a map I from E into \mathbb{V}
- I(x) is called the value of the point (pixel) x for I

Images

Definition

- Let V be a set of values
- An image (on E with values in \mathbb{V}) is a map I from E into \mathbb{V}
- I(x) is called the value of the point (pixel) x for I

Example

- Images with values in \mathbb{R}^+ : euclidean distance map D_X to a set $X \in \mathcal{P}(E)$
- Images with values in \mathbb{Z}^+ : distance map D_X for a geodesic distance in a uniform network

Grayscale images

 \blacksquare We denote by ${\mathcal I}$ the set of all images with integers values on E

An image in \mathcal{I} is also called *grayscale (or graylevel) image*

Grayscale images

- \blacksquare We denote by $\mathcal I$ the set of all images with integers values on E
- An image in \mathcal{I} is also called *grayscale (or graylevel) image*
- We denote by I an arbitrary image in $\mathcal I$
- The value *I*(*x*) of a point *x* ∈ *E* is also called the *gray level of x*, or the *gray intensity at x*

Topographical interpretation

An grayscale image I can be seen as a topographical relief

• I(x) is called the *altitude of x*

Topographical interpretation

An grayscale image I can be seen as a topographical relief

- I(x) is called the *altitude of* x
- Bright regions: mountains, crests, hills
- Dark regions: bassins, valleys

Level set

Definition

- Let $k \in \mathbb{Z}$
- The k-level set (or k-section, or k-threshold) of I, denoted by Ik, is the subset of E defined by:
 - $I_k = \{x \in E \mid I(x) \ge k\}$

-< E ► < E ►

Level set

Definition

- Let $k \in \mathbb{Z}$
- The k-level set (or k-section, or k-threshold) of I, denoted by Ik, is the subset of E defined by:
 - $I_k = \{x \in E \mid I(x) \ge k\}$

Grayscale images

Reconstruction

Property

$$\forall k, k' \in \mathbb{Z}, \ k' > k \implies I_{k'} \subseteq I_k$$

$$I(x) = \max\{k \in \mathbb{Z} \mid x \in I_k\}$$

イロト イヨト イヨト イヨ

æ

grayscale operators

• An operator (on \mathcal{I}) is a map from \mathcal{I} into \mathcal{I}

grayscale operators

• An operator (on \mathcal{I}) is a map from \mathcal{I} into \mathcal{I}

Definition (flat operators)

- Let γ be an increasing operator on E
- The stack operator induced by γ is the operator on I, also denoted by γ, defined by:

•
$$\forall I \in \mathcal{I}, \forall k \in \mathbb{Z}, [\gamma(I)]_k = \gamma(I_k)$$

grayscale operators

• An operator (on \mathcal{I}) is a map from \mathcal{I} into \mathcal{I}

Definition (flat operators)

- Let γ be an increasing operator on E
- The stack operator induced by γ is the operator on I, also denoted by γ, defined by:

•
$$\forall I \in \mathcal{I}, \forall k \in \mathbb{Z}, [\gamma(I)]_k = \gamma(I_k)$$

<u>Exercice</u>. Show that a same construction cannot be used to derive an operator on \mathcal{I} from an operator on E that is not increasing.

Characterisation of grayscale operators

Property

• Let γ be an increasing operator on E

$$[\gamma(I)](x) = \max\{k \in \mathbb{Z} \mid x \in \gamma(I_k)\}$$

Characterisation of grayscale operators

Property

• Let
$$\gamma$$
 be an increasing operator on E

$$[\gamma(I)](x) = \max\{k \in \mathbb{Z} \mid x \in \gamma(I_k)\}$$

<u>*Remark.*</u> Untill now, all operators seen in the MorphoGraph and Imagery course are increasing

Illustration: dilation on \mathcal{I} by Γ

Illustration: erosion on \mathcal{I} by Γ

Illustration: opening on \mathcal{I} by Γ

Illustration: closing on \mathcal{I} by Γ

BCMN : Morpho, graphes et imagerie 3D

Dilation/Erosion by a structuring element: characterisation

Property (duality)

- Let Γ be a structuring element
- $\epsilon_{\Gamma}(I) = -\delta_{\Gamma^{-1}}(-I)$

Dilation/Erosion by a structuring element: characterisation

Property (duality)

- Let Γ be a structuring element
- $\epsilon_{\Gamma}(I) = -\delta_{\Gamma^{-1}}(-I)$

Property

- Let Γ be a structuring element
- $[\delta_{\Gamma}(I)](x) = \max\{I(y) \mid y \in \Gamma^{-1}(x)\}$
- $[\epsilon_{\Gamma}(I)](x) = \min\{I(y) \mid y \in \Gamma(x)\}$

- E > - E >

 Write an algorithm whose data are a graph (E, Γ) and a grayscale image I on E and whose result is the image I' = δ_Γ(I')