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Filters: openings and closings

Filter

Definition

A filter (on E ) is an operator γ that is both increasing and
idempotent

∀X ,Y ∈ P(E ), X ⊆ Y =⇒ γ(X ) ⊆ γ(Y )
∀X ∈ P(E ), γ(γ(X )) = γ(X )
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Filters: openings and closings

Closing and opening

Definition

A closing (on E ) is a filter γ that is extensive

∀X ,Y ∈ P(E ), X ⊆ Y =⇒ γ(X ) ⊆ γ(Y )
∀X ∈ P(E ), γ(γ(X )) = γ(X )
∀X ∈ P(E ), X ⊆ γ(X )

An opening (on E ) is a filter γ that is anti-extensive

∀X ,Y ∈ P(E ), X ⊆ Y =⇒ γ(X ) ⊆ γ(Y )
∀X ∈ P(E ), γ(γ(X )) = γ(X )
∀X ∈ P(E ), γ(X ) ⊆ X

Property

γ is a closing if and only if ⋆γ is an opening
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Filters: openings and closings

Example 1

Property

The convex hull operator ch on R2 is a closing

The operator ⋆ec is then an opening

Exercise.

Prove this property by establishing the three following relations

∀X ,Y ∈ P(R2), X ⊆ Y =⇒ ec(X ) ⊆ ec(Y ) (increasingness)
∀X ∈ P(R2), ec(X ) = ec(ec(X )) (idempotence)
∀X ∈ P(R2), X ⊆ ec(X ) (extensivity)
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Openings and closings by adjunction

Adjunction issue

The notion of an adjunction plays a central role in morphology

It allows an opening and a closing to be built from any dilation
(i.e., an operator that commutes under union)

Question

Given a dilatation δ, can we always find an inverse operator δ′

to δ?

In other words, can we find δ′ such that

∀X ∈ P(E ), δ(δ′(X )) = X ?
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Openings and closings by adjunction

δ-lower set

Definition

Let δ be a dilation and let X ,X ′ ∈ P(E )

X ′ is δ-lower than X if

δ(X ′) ⊆ X

Property

Let δ be a dilation and let X ∈ P(E )

Among the sets that are δ-lower than X , there exists a greatest
element Ẋ

Ẋ = ∪{X ′ ∈ P(E ) | X ′ is δ-lower than X}
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Openings and closings by adjunction

Proof

By definition of union, Ẋ is the smallest set that contains all the sets
that are δ-lower than X . In order to complete the proof, it is sufficient
to show that Ẋ is also δ-lower than X (i.e. δ(Ẋ ) ⊆ X ). By definition
of a set that is δ-lower than X , we can
write Ẋ = ∪{X ′ ∈ P(E ) | δ(X ′) ⊆ X}.
Thus, δ(Ẋ ) = δ(∪{X ′ ∈ P(E ) | δ(X ′) ⊆ X}). Since the dilation
operator commutes under union, we can also
write δ(Ẋ ) = ∪{δ(X ′) | X ′ ∈ P(E ), δ(X ′) ⊆ X}. Therefore, by
definition of union, we have the relation δ(Ẋ ) ⊆ X , which completes
the proof of the property.

Exercise. Prove that, in general, there is no smallest element among
the sets that are ”δ-greater” than X .
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of a set that is δ-lower than X , we can
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Openings and closings by adjunction

Adjunct erosion

Definition

Let δ be a dilation

The adjunct erosion of δ is the operator δ̇ that maps
any X ∈ P(E ) to the greatest element in P(E ) that is δ-lower
than X :

δ̇(X ) = ∪{X ′ ∈ P(E ) | δ(X ′) ⊆ X}

Theorem

If δ is a dilation, then δ̇ is an erosion (i.e., δ̇ commutes under
intersection)
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Openings and closings by adjunction

Proof of the theorem

Proof. Let A,B ∈ P(E ). δ̇(A ∩ B) = ∪{X ′ ∈ P(E ) | δ(X ′) ⊆ [A ∩ B]}
= ∪{X ′ ∈ P(E ) | δ(X ′) ⊆ A et δ(X ′) ⊆ B}
= [∪{X ′ ∈ P(E ) | δ(X ′) ⊆ A}] ∩ [∪{X ′ ∈ P(E ) | δ(X ′) ⊆ B}]
= δ̇(A) ∩ δ̇(B)
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Openings and closings by adjunction

Adjunct dilation

We can do the same reasoning starting from the erosion operator
instead of the dilation one

We then have to inverse the relation ⊆ and to swap ∪ and ∩
If ϵ is an erosion, its adjunct dilation ϵ̇ is defined by:

∀X ∈ P(E ), ϵ̇(X ) = ∩{X ′ | X ⊆ ϵ(X ′)}
The adjunction relation is a bijection between dilations and
erosions:

ϵ = δ̇ ⇔ δ = ϵ̇

δ̇ ◦ δ = Id ⇔ δ = δ̇ = Id
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Openings and closings by structuring elements

Adjunctions by structuring elements

Property

Let Γ be a structuring element

δ̇Γ = ⋆δΓ−1

Important notation

If Γ is a structuring element

We denote by ϵΓ the adjunct erosion of δΓ

ϵΓ = δ̇Γ = ⋆δΓ−1
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Openings and closings by structuring elements

Closing and opening by adjunctions

Theorem

Let δ be a dilation and let ϵ = δ̇ be the adjunct erosion of δ

Let ϕ = ϵ ◦ δ and γ = δ ◦ ϵ

ϕ is a closing

γ is an opening
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Openings and closings by structuring elements

Opening and closing by structuring elements

Definition

Let Γ be a structuring element

The closing by Γ is the operator ϕΓ such that

ϕΓ = ⋆δΓ−1 ◦ δΓ
The opening by Γ is the operator γΓ such that

γΓ = δΓ ◦ ⋆δΓ−1
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Openings and closings by structuring elements

Exercise 1

Let X ⊆ Z2 be the set of black dots and let Γ be the structuring element
below

Represent the set γΓ(X )

Γ :
x
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Openings and closings by structuring elements

Characterization of the opening/closing by structuring
element

Property

Let Γ be a structuring element

∀X ∈ P(E ), γΓ(X ) = ∪{Γ(x) | x ∈ E , Γ(x) ⊆ X}

ϕΓ = ⋆γΓ−1
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Openings and closings by structuring elements

Topographical interpretation

We say that X ∈ P(E ) is thinner than the structuring element Γ
if ⋆δΓ(X ) = ∅

The opening of the set X by Γ removes the parts of X that are
thinner than Γ, that is to say

islands (isolated parts)
capes (thin convexities)
isthmus (junctions between non thin parts)

The closing removes the thin parts of X , that is to say

lakes (holes)
gulfs (thin concavities)
straits (junctions between non thin parts of X )
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Openings and closings by structuring elements

Exercise 2

Choose and apply an operator that “fills” the holes of the black object
X below
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