Introduction to morphological filtering

G. Bertrand, J. Cousty, M. Couprie and L. Najman

MorphoGraph 2022

1 Filters: openings and closings

2 Openings and closings by adjunction

3 Openings and closings by structuring elements

Filter

Definition

- A filter (on E) is an operator γ that is both increasing and idempotent
 - $\forall X, Y \in \mathcal{P}(E), X \subseteq Y \implies \gamma(X) \subseteq \gamma(Y)$

•
$$\forall X \in \mathcal{P}(E), \ \gamma(\gamma(X)) = \gamma(X)$$

★ 문 ► ★ 문 ►

Э

Closing and opening

Definition

- A closing (on E) is a filter γ that is extensive
 - $\forall X, Y \in \mathcal{P}(E), X \subseteq Y \implies \gamma(X) \subseteq \gamma(Y)$
 - $\forall X \in \mathcal{P}(E), \gamma(\gamma(X)) = \gamma(X)$
 - $\forall X \in \mathcal{P}(E), X \subseteq \gamma(X)$

▶ ▲ 문 ▶ ▲ 문 ▶

Closing and opening

Definition

• A closing (on E) is a filter γ that is extensive

• $\forall X, Y \in \mathcal{P}(E), X \subseteq Y \implies \gamma(X) \subseteq \gamma(Y)$

•
$$\forall X \in \mathcal{P}(E), \ \gamma(\gamma(X)) = \gamma(X)$$

$$\forall X \in \mathcal{P}(E), X \subseteq \gamma(X)$$

• An opening (on E) is a filter γ that is anti-extensive

$$\forall X, Y \in \mathcal{P}(E), X \subseteq Y \implies \gamma(X) \subseteq \gamma(Y)$$

$$\forall X \in \mathcal{P}(E), \ \gamma(\gamma(X)) = \gamma(X)$$

•
$$\forall X \in \mathcal{P}(E)$$
, $\gamma(X) \subseteq X$

Closing and opening

Definition

• A closing (on E) is a filter γ that is extensive

$$\forall X, Y \in \mathcal{P}(E), X \subseteq Y \implies \gamma(X) \subseteq \gamma(Y)$$

$$\forall X \in \mathcal{P}(E), \ \gamma(\gamma(X)) = \gamma(X)$$

$$\forall X \in \mathcal{P}(E), X \subseteq \gamma(X)$$

• An opening (on E) is a filter γ that is anti-extensive

$$\forall X, Y \in \mathcal{P}(E), X \subseteq Y \implies \gamma(X) \subseteq \gamma(Y)$$

$$\forall X \in \mathcal{P}(E), \ \gamma(\gamma(X)) = \gamma(X)$$

•
$$\forall X \in \mathcal{P}(E), \ \gamma(X) \subseteq X$$

Property

• γ is a closing if and only if $\star \gamma$ is an opening

BCMN : MorphoGraph and imagery

イロト イ団ト イヨト イヨト

æ

Property

• The convex hull operator ch on \mathbb{R}^2 is a closing

Property

• The convex hull operator ch on \mathbb{R}^2 is a closing

Exercise.

Prove this property by establishing the three following relations

•
$$orall X, Y \in \mathcal{P}(\mathbb{R}^2), X \subseteq Y \implies ec(X) \subseteq ec(Y)$$

$$\forall X \in \mathcal{P}(\mathbb{R}^2), \ ec(X) = ec(ec(X))$$

•
$$orall X \in \mathcal{P}(\mathbb{R}^2)$$
, $X \subseteq ec(X)$

(increasingness) (idempotence) (extensivity)

Property

- The convex hull operator ch on \mathbb{R}^2 is a closing
- The operator *ec is then an opening

Exercise.

Prove this property by establishing the three following relations

•
$$orall X, Y \in \mathcal{P}(\mathbb{R}^2), X \subseteq Y \implies \mathit{ec}(X) \subseteq \mathit{ec}(Y)$$

$$\forall X \in \mathcal{P}(\mathbb{R}^2), \ ec(X) = ec(ec(X))$$

•
$$orall X \in \mathcal{P}(\mathbb{R}^2)$$
, $X \subseteq ec(X)$

(increasingness) (idempotence) (extensivity)

Adjunction issue

- The notion of an adjunction plays a central role in morphology
- It allows an opening and a closing to be built from any dilation (*i.e.*, an operator that commutes under union)

Adjunction issue

- The notion of an adjunction plays a central role in morphology
- It allows an opening and a closing to be built from any dilation (*i.e.*, an operator that commutes under union)

Question

- Given a dilatation δ, can we always find an inverse operator δ' to δ?
- In other words, can we find δ' such that
 - $\forall X \in \mathcal{P}(E), \delta(\delta'(X)) = X$?

δ -lower set

Definition

- Let δ be a dilation and let $X, X' \in \mathcal{P}(E)$
- X' is δ -lower than X if
 - $\delta(X') \subseteq X$

-> -< ≣ >

δ -lower set

Definition

- Let δ be a dilation and let $X, X' \in \mathcal{P}(E)$
- X' is δ -lower than X if
 - $\delta(X') \subseteq X$

Property

- Let δ be a dilation and let $X \in \mathcal{P}(E)$
- Among the sets that are δ -lower than X, there exists a greatest element \dot{X}
 - $\dot{X} = \bigcup \{ X' \in \mathcal{P}(E) \mid X' \text{ is } \delta \text{-lower than } X \}$

A B M A B M

Proof

By definition of union, \dot{X} is the smallest set that contains all the sets that are δ -lower than X. In order to complete the proof, it is sufficient to show that \dot{X} is also δ -lower than X (*i.e.* $\delta(\dot{X}) \subseteq X$). By definition of a set that is δ -lower than X, we can write $\dot{X} = \bigcup \{X' \in \mathcal{P}(E) \mid \delta(X') \subseteq X\}$. Thus, $\delta(\dot{X}) = \delta(\bigcup \{X' \in \mathcal{P}(E) \mid \delta(X') \subseteq X\})$. Since the dilation operator commutes under union, we can also write $\delta(\dot{X}) = \bigcup \{\delta(X') \mid X' \in \mathcal{P}(E), \delta(X') \subseteq X\}$. Therefore, by definition of union, we have the relation $\delta(\dot{X}) \subseteq X$, which completes the proof of the property.

Proof

By definition of union, \dot{X} is the smallest set that contains all the sets that are δ -lower than X. In order to complete the proof, it is sufficient to show that \dot{X} is also δ -lower than X (*i.e.* $\delta(\dot{X}) \subseteq X$). By definition of a set that is δ -lower than X, we can write $\dot{X} = \bigcup \{X' \in \mathcal{P}(E) \mid \delta(X') \subseteq X\}$. Thus, $\delta(\dot{X}) = \delta(\bigcup \{X' \in \mathcal{P}(E) \mid \delta(X') \subseteq X\})$. Since the dilation operator commutes under union, we can also write $\delta(\dot{X}) = \bigcup \{\delta(X') \mid X' \in \mathcal{P}(E), \delta(X') \subseteq X\}$. Therefore, by definition of union, we have the relation $\delta(\dot{X}) \subseteq X$, which completes the proof of the property.

<u>Exercise</u>. Prove that, in general, there is no smallest element among the sets that are " δ -greater" than X.

Adjunct erosion

Definition

- Let
 δ be a dilation
- The adjunct erosion of δ is the operator $\dot{\delta}$ that maps any $X \in \mathcal{P}(E)$ to the greatest element in $\mathcal{P}(E)$ that is δ -lower than X:
 - $\dot{\delta}(X) = \cup \{X' \in \mathcal{P}(E) \mid \delta(X') \subseteq X\}$

Adjunct erosion

Definition

- Let δ be a dilation
- The adjunct erosion of δ is the operator δ that maps any X ∈ P(E) to the greatest element in P(E) that is δ-lower than X :
 - $\dot{\delta}(X) = \cup \{ X' \in \mathcal{P}(E) \mid \delta(X') \subseteq X \}$

Theorem

 If δ is a dilation, then δ is an erosion (i.e., δ commutes under intersection)

Proof of the theorem

Proof. Let
$$A, B \in \mathcal{P}(E)$$
. $\dot{\delta}(A \cap B) = \bigcup \{X' \in \mathcal{P}(E) \mid \delta(X') \subseteq [A \cap B]\}$
= $\bigcup \{X' \in \mathcal{P}(E) \mid \delta(X') \subseteq A \text{ et } \delta(X') \subseteq B\}$
= $[\bigcup \{X' \in \mathcal{P}(E) \mid \delta(X') \subseteq A\}] \cap [\bigcup \{X' \in \mathcal{P}(E) \mid \delta(X') \subseteq B\}]$
= $\dot{\delta}(A) \cap \dot{\delta}(B)$

< □ > < □ > < □

æ

Adjunct dilation

We can do the same reasoning starting from the erosion operator instead of the dilation one

- We can do the same reasoning starting from the erosion operator instead of the dilation one
- \blacksquare We then have to inverse the relation \subseteq and to swap \cup and \cap

- We can do the same reasoning starting from the erosion operator instead of the dilation one
- \blacksquare We then have to inverse the relation \subseteq and to swap \cup and \cap
- If ϵ is an erosion, its *adjunct dilation* $\dot{\epsilon}$ is defined by:
 - $\forall X \in \mathcal{P}(E), \dot{\epsilon}(X) = \cap \{X' \mid X \subseteq \epsilon(X')\}$

- We can do the same reasoning starting from the erosion operator instead of the dilation one
- \blacksquare We then have to inverse the relation \subseteq and to swap \cup and \cap
- If ϵ is an erosion, its *adjunct dilation* $\dot{\epsilon}$ is defined by:

• $\forall X \in \mathcal{P}(E), \dot{\epsilon}(X) = \cap \{X' \mid X \subseteq \epsilon(X')\}$

The adjunction relation is a bijection between dilations and erosions:

$$\bullet \ \epsilon = \dot{\delta} \Leftrightarrow \delta = \dot{\epsilon}$$

- We can do the same reasoning starting from the erosion operator instead of the dilation one
- \blacksquare We then have to inverse the relation \subseteq and to swap \cup and \cap
- If ϵ is an erosion, its *adjunct dilation* $\dot{\epsilon}$ is defined by:

• $\forall X \in \mathcal{P}(E), \dot{\epsilon}(X) = \cap \{X' \mid X \subseteq \epsilon(X')\}$

The adjunction relation is a bijection between dilations and erosions:

•
$$\epsilon = \dot{\delta} \Leftrightarrow \delta = \dot{\epsilon}$$

$$\delta \circ \delta = Id \Leftrightarrow \delta = \dot{\delta} = Id$$

Adjunctions by structuring elements

Property

• Let
$$\Gamma$$
 be a structuring element
• $\delta_{\Gamma} = \star \delta_{\Gamma^{-1}}$

Adjunctions by structuring elements

Property

• Let
$$\Gamma$$
 be a structuring element
• $\delta_{\Gamma} = \star \delta_{\Gamma^{-1}}$

Important notation

- If Γ is a structuring element
- We denote by ϵ_{Γ} the adjunct erosion of δ_{Γ}

•
$$\epsilon_{\Gamma} = \delta_{\Gamma} = \star \delta_{\Gamma^{-1}}$$

Closing and opening by adjunctions

Theorem

• Let δ be a dilation and let $\epsilon = \dot{\delta}$ be the adjunct erosion of δ

• Let
$$\phi = \epsilon \circ \delta$$
 and $\gamma = \delta \circ \epsilon$

Closing and opening by adjunctions

Theorem

• Let δ be a dilation and let $\epsilon = \dot{\delta}$ be the adjunct erosion of δ

• Let
$$\phi = \epsilon \circ \delta$$
 and $\gamma = \delta \circ \epsilon$

- ϕ is a closing
- γ is an opening

Opening and closing by structuring elements

Definition

- Let Γ be a structuring element
- The closing by Γ is the operator ϕ_{Γ} such that

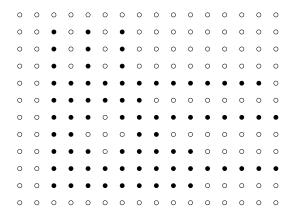
$$\bullet \phi_{\Gamma} = \star \delta_{\Gamma^{-1}} \circ \delta_{\Gamma}$$

• The opening by Γ is the operator γ_{Γ} such that

$$\bullet \gamma_{\Gamma} = \delta_{\Gamma} \circ \star \delta_{\Gamma^{-1}}$$

Exercise 1

- Let X ⊆ Z² be the set of black dots and let Γ be the structuring element below
- Represent the set $\gamma_{\Gamma}(X)$



2.5

Openings and closings by structuring elements

Characterization of the opening/closing by structuring element

Property

Let Γ be a structuring element

• $\forall X \in \mathcal{P}(E), \ \gamma_{\Gamma}(X) = \cup \{ \Gamma(x) \mid x \in E, \Gamma(x) \subseteq X \}$

Openings and closings by structuring elements

Characterization of the opening/closing by structuring element

Property

Let Γ be a structuring element

•
$$\forall X \in \mathcal{P}(E), \ \gamma_{\Gamma}(X) = \cup \{ \Gamma(x) \mid x \in E, \Gamma(x) \subseteq X \}$$

$$\bullet \phi_{\Gamma} = \star \gamma_{\Gamma^{-1}}$$

Topographical interpretation

• We say that $X \in \mathcal{P}(E)$ is *thinner* than the structuring element Γ if $\star \delta_{\Gamma}(X) = \emptyset$

Topographical interpretation

- We say that $X \in \mathcal{P}(E)$ is *thinner* than the structuring element Γ if $\star \delta_{\Gamma}(X) = \emptyset$
- The opening of the set X by Γ removes the parts of X that are thinner than Γ, that is to say
 - islands (isolated parts)
 - capes (thin convexities)
 - isthmus (junctions between non thin parts)

Topographical interpretation

- We say that $X \in \mathcal{P}(E)$ is *thinner* than the structuring element Γ if $\star \delta_{\Gamma}(X) = \emptyset$
- The opening of the set X by Γ removes the parts of X that are thinner than Γ, that is to say
 - islands (isolated parts)
 - capes (thin convexities)
 - isthmus (junctions between non thin parts)
- The closing removes the thin parts of \overline{X} , that is to say
 - lakes (holes)
 - gulfs (thin concavities)
 - straits (junctions between non thin parts of \overline{X})

Exercise 2

Choose and apply an operator that "fills" the holes of the black object X below

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	٠	0	0	٠	0
0	0	0	0	٠	٠	٠	٠	0	0	0	٠	0	0	٠	0
0	0	0	٠	٠	0	0	٠	٠	٠	٠	٠	0	0	٠	0
0	٠	٠	٠	0	0	0	٠	٠	٠	٠	٠	٠	٠	٠	0
0	0	0	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	٠	0
0	0	0	٠	٠	٠	٠	٠	٠	٠	٠	٠	0	0	٠	0
0	٠	٠	٠	٠	٠	٠	٠	٠	٠	0	0	0	0	٠	0
0	0	٠	٠	٠	٠	٠	٠	٠	٠	0	0	0	٠	٠	0
0	0	0	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

E ∽ < @