Introduction to morphological filtering

G. Bertrand, J. Cousty, M. Couprie and L. Najman

MorphoGraph
2022

ESIEE
 PARIS

Founding Member

) (Université

Outline of the lecture

1 Filters: openings and closings

2 Openings and closings by adjunction

3 Openings and closings by structuring elements

Filter

Definition

- A filter (on E) is an operator γ that is both increasing and idempotent
- $\forall X, Y \in \mathcal{P}(E), X \subseteq Y \quad \Longrightarrow \quad \gamma(X) \subseteq \gamma(Y)$
- $\forall X \in \mathcal{P}(E), \gamma(\gamma(X))=\gamma(X)$

Closing and opening

Definition

- A closing (on E) is a filter γ that is extensive

■ $\forall X, Y \in \mathcal{P}(E), X \subseteq Y \quad \Longrightarrow \quad \gamma(X) \subseteq \gamma(Y)$

- $\forall X \in \mathcal{P}(E), \gamma(\gamma(X))=\gamma(X)$
- $\forall X \in \mathcal{P}(E), X \subseteq \gamma(X)$

Closing and opening

Definition

- A closing (on E) is a filter γ that is extensive

■ $\forall X, Y \in \mathcal{P}(E), X \subseteq Y \quad \Longrightarrow \quad \gamma(X) \subseteq \gamma(Y)$

- $\forall X \in \mathcal{P}(E), \gamma(\gamma(X))=\gamma(X)$
- $\forall X \in \mathcal{P}(E), X \subseteq \gamma(X)$
- An opening (on E) is a filter γ that is anti-extensive

■ $\forall X, Y \in \mathcal{P}(E), X \subseteq Y \quad \Longrightarrow \quad \gamma(X) \subseteq \gamma(Y)$

- $\forall X \in \mathcal{P}(E), \gamma(\gamma(X))=\gamma(X)$
- $\forall X \in \mathcal{P}(E), \gamma(X) \subseteq X$

Closing and opening

Definition

- A closing (on E) is a filter γ that is extensive
- $\forall X, Y \in \mathcal{P}(E), X \subseteq Y \quad \Longrightarrow \quad \gamma(X) \subseteq \gamma(Y)$
- $\forall X \in \mathcal{P}(E), \gamma(\gamma(X))=\gamma(X)$
- $\forall X \in \mathcal{P}(E), X \subseteq \gamma(X)$
- An opening (on E) is a filter γ that is anti-extensive

■ $\forall X, Y \in \mathcal{P}(E), X \subseteq Y \quad \Longrightarrow \quad \gamma(X) \subseteq \gamma(Y)$

- $\forall X \in \mathcal{P}(E), \gamma(\gamma(X))=\gamma(X)$
- $\forall X \in \mathcal{P}(E), \gamma(X) \subseteq X$

Property

- γ is a closing if and only if $\star \gamma$ is an opening

Example 1

Example 1

Property

- The convex hull operator ch on \mathbb{R}^{2} is a closing

Example 1

Property

- The convex hull operator ch on \mathbb{R}^{2} is a closing

Exercise.

- Prove this property by establishing the three following relations
$\square \forall X, Y \in \mathcal{P}\left(\mathbb{R}^{2}\right), X \subseteq Y \Longrightarrow e c(X) \subseteq e c(Y) \quad$ (increasingness)
- $\forall X \in \mathcal{P}\left(\mathbb{R}^{2}\right)$, ec $(X)=e c(e c(X))$

■ $\forall X \in \mathcal{P}\left(\mathbb{R}^{2}\right), X \subseteq e c(X)$ (idempotence) (extensivity)

Example 1

Property

- The convex hull operator ch on \mathbb{R}^{2} is a closing
- The operator *ec is then an opening

Exercise.

- Prove this property by establishing the three following relations
- $\forall X, Y \in \mathcal{P}\left(\mathbb{R}^{2}\right), X \subseteq Y \Longrightarrow e c(X) \subseteq e c(Y) \quad$ (increasingness)
- $\forall X \in \mathcal{P}\left(\mathbb{R}^{2}\right)$, ec $(X)=e c(e c(X))$

■ $\forall X \in \mathcal{P}\left(\mathbb{R}^{2}\right), X \subseteq e c(X)$ (idempotence) (extensivity)

Adjunction issue

- The notion of an adjunction plays a central role in morphology
- It allows an opening and a closing to be built from any dilation (i.e., an operator that commutes under union)

Adjunction issue

- The notion of an adjunction plays a central role in morphology
- It allows an opening and a closing to be built from any dilation (i.e., an operator that commutes under union)

Question

- Given a dilatation δ, can we always find an inverse operator δ^{\prime} to δ ?
- In other words, can we find δ^{\prime} such that
- $\forall X \in \mathcal{P}(E), \delta\left(\delta^{\prime}(X)\right)=X ?$

δ-lower set

Definition

- Let δ be a dilation and let $X, X^{\prime} \in \mathcal{P}(E)$

■ X^{\prime} is δ-lower than X if

- $\delta\left(X^{\prime}\right) \subseteq X$

δ-lower set

Definition

- Let δ be a dilation and let $X, X^{\prime} \in \mathcal{P}(E)$

■ X^{\prime} is δ-lower than X if

- $\delta\left(X^{\prime}\right) \subseteq X$

Property

- Let δ be a dilation and let $X \in \mathcal{P}(E)$
- Among the sets that are δ-lower than X, there exists a greatest element \dot{X}
- $\dot{X}=\cup\left\{X^{\prime} \in \mathcal{P}(E) \mid X^{\prime}\right.$ is δ-lower than $\left.X\right\}$

Proof

By definition of union, \dot{X} is the smallest set that contains all the sets that are δ-lower than X. In order to complete the proof, it is sufficient to show that \dot{X} is also δ-lower than X (i.e. $\delta(\dot{X}) \subseteq X$). By definition of a set that is δ-lower than X, we can
write $\dot{X}=\cup\left\{X^{\prime} \in \mathcal{P}(E) \mid \delta\left(X^{\prime}\right) \subseteq X\right\}$.
Thus, $\delta(\dot{X})=\delta\left(\cup\left\{X^{\prime} \in \mathcal{P}(E) \mid \delta\left(X^{\prime}\right) \subseteq X\right\}\right)$. Since the dilation operator commutes under union, we can also write $\delta(\dot{X})=\cup\left\{\delta\left(X^{\prime}\right) \mid X^{\prime} \in \mathcal{P}(E), \delta\left(X^{\prime}\right) \subseteq X\right\}$. Therefore, by definition of union, we have the relation $\delta(\dot{X}) \subseteq X$, which completes the proof of the property.

Proof

By definition of union, \dot{X} is the smallest set that contains all the sets that are δ-lower than X. In order to complete the proof, it is sufficient to show that \dot{X} is also δ-lower than X (i.e. $\delta(\dot{X}) \subseteq X$). By definition of a set that is δ-lower than X, we can
write $\dot{X}=\cup\left\{X^{\prime} \in \mathcal{P}(E) \mid \delta\left(X^{\prime}\right) \subseteq X\right\}$.
Thus, $\delta(\dot{X})=\delta\left(\cup\left\{X^{\prime} \in \mathcal{P}(E) \mid \delta\left(X^{\prime}\right) \subseteq X\right\}\right)$. Since the dilation operator commutes under union, we can also write $\delta(\dot{X})=\cup\left\{\delta\left(X^{\prime}\right) \mid X^{\prime} \in \mathcal{P}(E), \delta\left(X^{\prime}\right) \subseteq X\right\}$. Therefore, by definition of union, we have the relation $\delta(\dot{X}) \subseteq X$, which completes the proof of the property.

Exercise. Prove that, in general, there is no smallest element among the sets that are " δ-greater" than X.

Adjunct erosion

Definition

- Let δ be a dilation
- The adjunct erosion of δ is the operator $\dot{\delta}$ that maps any $X \in \mathcal{P}(E)$ to the greatest element in $\mathcal{P}(E)$ that is δ-lower than X :
- $\dot{\delta}(X)=\cup\left\{X^{\prime} \in \mathcal{P}(E) \mid \delta\left(X^{\prime}\right) \subseteq X\right\}$

Adjunct erosion

Definition

- Let δ be a dilation
- The adjunct erosion of δ is the operator $\dot{\delta}$ that maps any $X \in \mathcal{P}(E)$ to the greatest element in $\mathcal{P}(E)$ that is δ-lower than X :
- $\dot{\delta}(X)=\cup\left\{X^{\prime} \in \mathcal{P}(E) \mid \delta\left(X^{\prime}\right) \subseteq X\right\}$

Theorem

- If δ is a dilation, then $\dot{\delta}$ is an erosion (i.e., $\dot{\delta}$ commutes under intersection)

Proof of the theorem

$$
\begin{aligned}
& \text { Proof. Let } A, B \in \mathcal{P}(E) . \dot{\delta}(A \cap B)=\cup\left\{X^{\prime} \in \mathcal{P}(E) \mid \delta\left(X^{\prime}\right) \subseteq[A \cap B]\right\} \\
& =\cup\left\{X^{\prime} \in \mathcal{P}(E) \mid \delta\left(X^{\prime}\right) \subseteq A \text { et } \delta\left(X^{\prime}\right) \subseteq B\right\} \\
& =\left[\cup\left\{X^{\prime} \in \mathcal{P}(E) \mid \delta\left(X^{\prime}\right) \subseteq A\right\}\right] \cap\left[\cup\left\{X^{\prime} \in \mathcal{P}(E) \mid \delta\left(X^{\prime}\right) \subseteq B\right\}\right] \\
& =\dot{\delta}(A) \cap \dot{\delta}(B)
\end{aligned}
$$

Adjunct dilation

■ We can do the same reasoning starting from the erosion operator instead of the dilation one

Adjunct dilation

- We can do the same reasoning starting from the erosion operator instead of the dilation one
- We then have to inverse the relation \subseteq and to swap \cup and \cap

Adjunct dilation

- We can do the same reasoning starting from the erosion operator instead of the dilation one
- We then have to inverse the relation \subseteq and to swap \cup and \cap
- If ϵ is an erosion, its adjunct dilation $\dot{\epsilon}$ is defined by:

■ $\forall X \in \mathcal{P}(E), \dot{\epsilon}(X)=\cap\left\{X^{\prime} \mid X \subseteq \epsilon\left(X^{\prime}\right)\right\}$

Adjunct dilation

- We can do the same reasoning starting from the erosion operator instead of the dilation one
- We then have to inverse the relation \subseteq and to swap \cup and \cap
- If ϵ is an erosion, its adjunct dilation $\dot{\epsilon}$ is defined by:

■ $\forall X \in \mathcal{P}(E), \dot{\epsilon}(X)=\cap\left\{X^{\prime} \mid X \subseteq \epsilon\left(X^{\prime}\right)\right\}$

- The adjunction relation is a bijection between dilations and erosions:
- $\epsilon=\dot{\delta} \Leftrightarrow \delta=\dot{\epsilon}$

Adjunct dilation

- We can do the same reasoning starting from the erosion operator instead of the dilation one
- We then have to inverse the relation \subseteq and to swap \cup and \cap

■ If ϵ is an erosion, its adjunct dilation $\dot{\epsilon}$ is defined by:
■ $\forall X \in \mathcal{P}(E), \dot{\epsilon}(X)=\cap\left\{X^{\prime} \mid X \subseteq \epsilon\left(X^{\prime}\right)\right\}$

- The adjunction relation is a bijection between dilations and erosions:
- $\epsilon=\dot{\delta} \Leftrightarrow \delta=\dot{\epsilon}$

■ $\dot{\delta} \circ \delta=I d \Leftrightarrow \delta=\dot{\delta}=l d$

Adjunctions by structuring elements

Property

- Let Γ be a structuring element
- $\dot{\delta_{\Gamma}}=\star \delta_{\Gamma-1}$

Adjunctions by structuring elements

Property

- Let Γ be a structuring element
- $\dot{\delta_{\Gamma}}=\star \delta_{\Gamma-1}$

Important notation

- If Γ is a structuring element

■ We denote by ϵ_{Γ} the adjunct erosion of δ_{Γ}

- $\epsilon_{\Gamma}=\dot{\delta_{\Gamma}}=\star \delta_{\Gamma-1}$

Closing and opening by adjunctions

Theorem

- Let δ be a dilation and let $\epsilon=\dot{\delta}$ be the adjunct erosion of δ
- Let $\phi=\epsilon \circ \delta$ and $\gamma=\delta \circ \epsilon$

Closing and opening by adjunctions

Theorem

- Let δ be a dilation and let $\epsilon=\dot{\delta}$ be the adjunct erosion of δ

■ Let $\phi=\epsilon \circ \delta$ and $\gamma=\delta \circ \epsilon$

- ϕ is a closing

■ γ is an opening

Opening and closing by structuring elements

Definition

- Let Γ be a structuring element
- The closing by Γ is the operator ϕ_{Γ} such that
- $\phi_{\Gamma}=\star \delta_{\Gamma-1} \circ \delta_{\Gamma}$
- The opening by Γ is the operator γ_{Γ} such that
- $\gamma_{\Gamma}=\delta_{\Gamma} \circ \star \delta_{\Gamma-1}$

Exercise 1

- Let $X \subseteq \mathbb{Z}^{2}$ be the set of black dots and let Γ be the structuring element below
- Represent the set $\gamma_{\Gamma}(X)$

Characterization of the opening/closing by structuring element

Property

- Let Γ be a structuring element
- $\forall X \in \mathcal{P}(E), \gamma_{\Gamma}(X)=\cup\{\Gamma(x) \mid x \in E, \Gamma(x) \subseteq X\}$

Characterization of the opening/closing by structuring element

Property

- Let Γ be a structuring element
- $\forall X \in \mathcal{P}(E), \gamma_{\Gamma}(X)=\cup\{\Gamma(x) \mid x \in E, \Gamma(x) \subseteq X\}$

■ $\phi_{\Gamma}=\star \gamma_{\Gamma-1}$

Topographical interpretation

■ We say that $X \in \mathcal{P}(E)$ is thinner than the structuring element Γ if $\star \delta_{\Gamma}(X)=\emptyset$

Topographical interpretation

■ We say that $X \in \mathcal{P}(E)$ is thinner than the structuring element Γ if $\star \delta_{\Gamma}(X)=\emptyset$

- The opening of the set X by Γ removes the parts of X that are thinner than Γ, that is to say
- islands (isolated parts)
- capes (thin convexities)
- isthmus (junctions between non thin parts)

Topographical interpretation

- We say that $X \in \mathcal{P}(E)$ is thinner than the structuring element Γ if $\star \delta_{\Gamma}(X)=\emptyset$
■ The opening of the set X by Γ removes the parts of X that are thinner than Γ, that is to say
- islands (isolated parts)
- capes (thin convexities)
- isthmus (junctions between non thin parts)
- The closing removes the thin parts of \bar{X}, that is to say
- lakes (holes)
- gulfs (thin concavities)
- straits (junctions between non thin parts of \bar{X})

Exercise 2

■ Choose and apply an operator that "fills" the holes of the black object X below

